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1. Introduction

Flux compactifications [3] have appeared in the last few years as a promising approach to

make contact between string theory and real world low energy physics. Indeed, considering

non-trivial vacuum values for some supergravity fluxes on the internal manifold (on which

one compactifies) has several interesting phenomenological consequences. For instance, one

generates this way a potential in the effective quantum field theory, which lifts some of the

moduli [4, 5]. One can also get a natural way to create hierarchies [6], and new possibilities

for supersymmetry breaking [4, 5].

Previously, in order to preserve the minimal amount of supersymmetry in the low en-

ergy effective theory, one was led to consider a Calabi-Yau (CY) as the compactifications

manifold [7]. The introduction of background fluxes modifies the supersymmetry condi-

tions, leading generically to new manifolds. The general mathematical characterization of

these new manifolds was given in [8, 9], where the authors rewrote the supersymmetry

conditions in terms of Generalized Complex Geometry (GCG) [10, 11], and showed that

the internal manifold has to be a (twisted) Generalized Calabi-Yau (GCY). An N = 1

supergravity vacuum generically needs the existence of a pair of two globally defined non-

vanishing spinors on the internal manifold. A good object to characterize this pair is then

the structure group on the tangent bundle T . Indeed, in six dimensions, this pair of spinors

defines either an SU(3) structure, a static SU(2) structure, or what we will call here an

intermediate SU(2) structure, when respectively the spinors are parallel, orthogonal, or

between the two. These different possibilities are encoded, in the GCG context, into an

SU(3) × SU(3) structure on the bundle T ⊕ T ∗. This structure is related in GCG to the

existence of a pair of compatible pure spinors. When one of the two pure spinors is closed,

the manifold is said to be a Generalized Calabi-Yau.

An interesting question is to find explicit examples of these new backreacted back-

grounds. A successful approach [12] has been to start from a warped CY (in the simplest

case a warped T 6) with an O3-plane1 and some background fluxes, and perform T-dualities

to obtain new vacua on non-CY manifolds. In [1], the authors explored the possibility of

using GCG to find “new” flux vacua, “new” in the sense they are neither conformal Calabi-

Yau manifolds, nor T-dual to a warped T 6 with an O3: there are indeed some “new” vacua

corresponding to nilmanifolds and solvmanifolds (twisted tori) with non trivial fluxes.

In their search for “new” four-dimensional Minkowski vacua, the authors of [1] only

looked for SU(3) or static SU(2) structures, since only those seemed to be compatible with

the orientifold projection. Recently in [2], it was shown that intermediate SU(2) structures

are also possible when one allows a mixing of the usual SU(2) structure forms under the

1The compactification to four-dimensional Minkowski space-time needs the presence of space-filling orien-

tifolds (O-planes) as sources in order to compensate the contribution of the fluxes to the energy-momentum

tensor (the no-go theorem, or tadpole cancelation) [6].
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projection conditions. Then the last authors constructed such vacua on some GCY, starting

from a warped T 6 with an O3 and performing some specific T-dualities.

In this paper, by first rewriting in a more tractable way the projection conditions

imposed by the orientifold for intermediate SU(2) structures, we manage to find for these

structures genuinely “new” four-dimensional (Minkowski) flux vacua of type II string theory

with (at least) N = 1. Note that we find them in the large volume limit with smeared

sources, and for constant intermediate SU(2) structures. These vacua are not T-dual to a

warped T 6 with an O3 because the manifolds on which we find them, the same as in [1],

do not have the right isometries to perform the needed T-dualities. Furthermore, by going

to the limit in which the two internal spinors are parallel or orthogonal, we find back the

solutions of [1], hence providing some idea of what a generic dynamical SU(3) × SU(3)

structure should look like (a dynamical structure occurs when the internal spinors, hence

the structure, are varying along the manifold).

The rewriting of the orientifold projection conditions is done by introducing what we

call the projection (eigen)basis, i.e. the set of structure forms which are “eigenvectors” for

the projection. These forms actually define a new SU(2) structure, obtained by a rotation

from the usual one. Moreover, we show that this SU(2) structure is nothing (modulo a

rescaling) but the one appearing with the dielectric pure spinors. The latter are a rewriting

of the GCG pure spinors, used to study the deformations of four-dimensional N = 4 Super

Yang-Mills in the context of AdS/CFT [13, 14]. As the pure spinors are much simpler

when expressed with the projection basis variables, the supersymmetry conditions get

much simpler. It is then easier to find solutions, which are nothing but the “new” vacua.

Here is how the paper is organized. In section 2, we give our supergravity conventions,

the definitions of G-structures and our ansatz for the internal spinors, the GCG pure

spinors and their properties, and finally a sum-up of the conditions a vacuum has to verify.

In section 3, we derive as in [2] the projection conditions and rewrite them in a more

tractable way by introducing the projection basis. Then we express the pure spinors in

these variables, and explain the link with the dielectric pure spinors. Finally we give the

SUSY conditions in these variables too. In section 4, after giving details on the set-up in

which we are going to look for vacua, and the method used to find them, we give three

solutions, among which two are T-duals. Then we study their limits to recover the solutions

found in [1], and more. Finally, we look for other solutions in the specific case where there

are several non completely overlapping orientifolds. In the appendix A, we give several

conventions, a derivation of the SU(2) structure conditions, and the proof that some of the

structure conditions imply the compatibility conditions that should be verified by the pair

of GCG pure spinors to define an SU(3) × SU(3) structure. In appendix B, we give the

structure conditions written in the projection basis variables, and details on the derivation

of the SUSY conditions written in these variables too. In appendix C, we discuss some

normalization condition related to the calibration of smeared sources. Details on the search

for solutions with several orientifolds are given in appendix D.

2. Background

In this section, we give our supergravity conventions, discuss the parametrization of the

– 3 –



J
H
E
P
0
8
(
2
0
0
8
)
0
9
6

internal spinors and their relation to the structure group. We also introduce pure spinors in

GCG and give some of their properties. Finally, we formulate the conditions that a SUSY

vacuum of type II string theory with fluxes has to satisfy, in terms of the pure spinors.

Along this section, we mainly follow the conventions of [1] and [2]. Some related details

are given in appendix A.

2.1 Supergravity conventions

In this paper we are interested in four-dimensional Minkowski flux vacua of type II string

theory with (at least) N = 1 supersymmetry (SUSY). Therefore we will consider type II

supergravity (SUGRA) backgrounds, that are warped products of Minkowski R
3,1 and of

a six-dimensional compact space M6 (assumed to be a smooth manifold). So we choose for

these backgrounds the following metric:

ds2(10) = e2A(y) ηµνdx
µdxν + gµν(y)dyµdyν , (2.1)

η meaning here the diagonal Minkowski metric with signature (−,+,+,+). The solutions

will also have non zero background values for some of the RR and NS fluxes. Poincaré

invariance in four dimensions requires the fluxes living on Minkowski to be proportional to

vol(4), the warped four-dimensional volume form. So more interestingly, we will focus on

non trivial fluxes living on the internal manifold. As in [1], we define the total internal RR

field F as

IIA : F = F0 + F2 + F4 + F6 , (2.2)

IIB : F = F1 + F3 + F5 , (2.3)

with Fk the internal k-form RR field. F is related to the total ten-dimensional RR field-

strength F (10) by

F (10) = F + vol(4) ∧ λ(∗F ) , (2.4)

where ∗ is the six-dimensional Hodge star, and λ is an action defined on any p-form Ap by

a complete reversal of its indices

λ(Ap) = (−1)
p(p−1)

2 Ap . (2.5)

In order to find such solutions, one should solve the equations of motion and the Bianchi

identities for the fluxes. Actually, it has been proven in [15, 16, 2] that, for the class of

supergravity backgrounds we are interested in, the equations of motion for the metric and

the dilaton φ are implied by the Bianchi identities and the ten-dimensional supersymmetry

conditions, so we will solve the latter. The ten-dimensional supersymmetry conditions are

the annihilation of the supersymmetry variations of the gravitino ψµ and the dilatino λ,

given by [8]

δψµ = Dµǫ+
1

4
HµPǫ+

1

16
eφ
∑

n

/F2nγµPnǫ , (2.6)

δλ =

(

/∂φ+
1

2
/HP
)

ǫ+
1

8
eφ
∑

n

(−1)2n(5− 2n) /F2nPnǫ , (2.7)
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with n = 0, . . . , 5 for IIA and n = 1
2 , . . . ,

9
2 for IIB, and Hµ = 1

2Hµνργ
νρ, H being the

NSNS flux. The definitions of P and Pn are different in IIA and IIB: for IIA, P = γ11 and

Pn = γn
11σ

1, while for IIB, P = −σ3, Pn = σ1 for n+ 1
2 even and Pn = iσ2 for n+ 1

2 odd.

The two Majorana-Weyl supersymmetry parameters of type II supergravity are arranged

in the doublet ǫ = (ǫ1, ǫ2).

Because of the product structure of the solution (2.1), the Lorentz group is broken to

SO(1, 3)×SO(6) and the supersymmetry parameters ǫi should be decomposed accordingly.

This means there should be on the compact manifold M6 a set of independent globally

defined and non-vanishing spinors noted ηi
a on which one can expand the ǫi as

ǫ1 = ζ1 ⊗
∑

a

α1
aη

1
a + c.c. ,

ǫ2 = ζ2 ⊗
∑

a

α2
aη

2
a + c.c. . (2.8)

In this formulation, the ζi are the four-dimensional SUSY parameters, and the decom-

position on the six-dimensional (internal) spinors can be seen from the four-dimensional

point of view as internal degrees of freedom of the ζi. Hence, the number N of four-

dimensional SUSYs is increased by one for each non-zero αi
a with the corresponding inter-

nal spinor ηi
a being a Killing spinor for the SUSY conditions. So, to get at least a N = 1

vacuum as we want, one needs at least a pair (η1, η2) of globally defined non-vanishing

internal spinors that satisfy the SUSY conditions (and for N = 1 one also needs ζ1 = ζ2).

Let us now see how to parametrize this pair of internal spinors, and their relations with

the G-structures one can define on the manifold.

2.2 Internal spinors and G-structures variables

A manifold M is said to admit a G-structure when its structure group is reduced to the

subgroup G. The reduction is associated to the existence on the manifold of globally defined

spinors. Here we are interested in SU(3) and SU(2) structures in six-dimensions.

An SU(3) structure is defined by a globally defined non-vanishing spinor η+. In six

dimensions, this spinor is a Weyl spinor so it has definite chirality. Here we take η+ of

positive chirality and of unitary norm. Complex conjugation acts as (η+)∗ = η−. A G-

structure is equivalently defined in terms of G-invariant no-where vanishing globally defined

forms. These can be obtained as bilinears of the globally defined spinors. For an SU(3)

structure, one can define a holomorphic three-form Ω3 and a Kähler form J given by2

Ωµνρ = −iη†−γµνρη+ ,

Jµν = −iη†+γµνη+ , (2.9)

satisfying the structure conditions

J ∧ Ω3 = 0
4

3
J3 = iΩ3 ∧ Ω3 6= 0 . (2.10)

2For both SU(3) and SU(2) structures, the holomorphicity of forms is defined with respect to the almost

complex structure given in subsection 4.1. The indices µ, ν, ρ are real.
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Similarly, an SU(2) structure is defined by two orthogonal globally defined spinors η+

and χ+ (we take them of unitary norm). In terms of invariant forms, an SU(2) structure is

given by a holomorphic one-form z (we take ||z||2 = 2), a real two-form j and a holomorphic

two-form Ω2 given by

zµ = η†−γµχ+ ,

jµν = −iη†+γµνη+ + iχ†
+γµνχ+ ,

Ωµν = η†−γµνχ− , (2.11)

satisfying the following structure conditions

j2 =
1

2
Ω2 ∧ Ω2 6= 0 , (2.12)

j ∧ Ω2 = 0 , Ω2 ∧ Ω2 = 0 , (2.13)

zxΩ2 = 0 , zxj = 0 . (2.14)

where the definition of the contraction x is given in appendix A.1. We give one possible

derivation of these structure conditions in appendix A.2.

Note that it is possible to rewrite the spinor χ+ as

χ+ =
1

2
zη− . (2.15)

The SU(2) structure is naturally embedded in the SU(3) structure defined by η+:

J = j +
i

2
z ∧ z , Ω3 = z ∧ Ω2 , (2.16)

and one then has the reverse relations

j = J − i

2
z ∧ z , Ω2 =

1

2
zxΩ3 . (2.17)

Let us consider now a pair of globally defined non-vanishing internal spinors, η1
+ and η2

+,

corresponding to the internal components of the supersymmetry parameters. We choose

to parametrize them this way (always possible):

η1
+ = aη+ ,

η2
+ = b

(

k||η+ + k⊥
zη−
2

)

. (2.18)

η+ and χ+ = 1
2zη− in (2.18) define an SU(2) structure in the way explained before. k|| is

real and 0 ≤ k|| ≤ 1, k⊥ =
√

1− k2
||. a and b are never-vanishing complex numbers related

to the norms of the spinors ηi
+:

||η1
+|| = |a| , ||η2

+|| = |b| . (2.19)

In the rest of the paper we will always take |a| = |b|, so that ||η1
+|| = ||η2

+||. As we will

see later, this condition is implied by the orientifold projection. The relative phases of the
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η1
+

η2
+

η1
+

η2
+

φ

η1
+

η2
+

SU(3) structure: Intermediate SU(2) structure: Static SU(2) structure:

k|| = 1, k⊥ = 0 k|| 6= 0, k⊥ 6= 0 k|| = 0, k⊥ = 1

Figure 1: The different structures

spinors can be fixed by introducing eiθ = b
a and imposing b = a. The remaining freedom is

then only in θ and |a|.
Depending on the values of the parameters k|| and k⊥, one can define from these

spinors different G-structures on the internal manifold. If one takes k⊥ = 0, the ηi
+ become

parallel, hence there is only one globally defined non-vanishing spinor, and this corresponds

to an SU(3) structure. When k⊥ 6= 0, the two spinors are genuinely independent, and so

we get an SU(2) structure [17]. In the particular case k|| = 0, i.e. k⊥ = 1, the spinors

are orthogonal, and this corresponds to what is called in the literature a static SU(2)

structure. In the intermediate case (k|| 6= 0, k⊥ 6= 0), we have what is sometimes called a

dynamical SU(2) structure, in reference to the fact these coefficients could change when we

move on the manifold. We prefer to call it an intermediate SU(2) structure, because these

coefficients can also be constant but still non-zero (and then the structure is not properly

speaking dynamical).

It is clear that k|| and k⊥ can be related to the “angle” between the spinors. We can

introduce the angle φ

k|| = cos(φ), k⊥ = sin(φ), 0 ≤ φ ≤ π

2
, (2.20)

and we get for the different structures the pictures given in figure 1.

As a comparison to (2.16), one can work out the embedding of the defined SU(2)

structure in the SU(3) structure defined by
η2
+

||η2
+||

(J̃ and Ω̃3). It is given by the previous

U(1) parameter φ [17]:

J̃ = cos(2φ)j +
i

2
z ∧ z + sin(2φ)Re(Ω2) , (2.21)

Ω̃3 = − sin(2φ)z ∧ j + z ∧ (cos(2φ)Re(Ω2) + iIm(Ω2)) . (2.22)

2.3 Pure spinors of GCG and properties

To solve the SUSY conditions, rather than using Killing spinors methods or G-structures

tools, we will use the formalism of Generalized Complex Geometry (GCG). In Generalized

– 7 –
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Complex Geometry, given a manifold Md of real dimension d, one considers the bundle

T⊕T ∗, whose sections are generalized vectors (sums of a vector and a 1-form). For a review

on GCG, see for instance [1] or the original works [10] and [11]. In this paper we will be

interested in the spinors on T⊕T ∗. These are Majorana-Weyl Cliff(d, d) spinors, and locally

they can be seen as polyforms: sums of even/odd differential forms, which correspond to

positive/negative chirality spinors. A Cliff(d, d) spinor is pure if it is annihilated by half of

the Cliff(d, d) gamma matrices. Such pure spinors can be obtained as tensor products of

Cliff(d) spinors, since bispinors are isomorphic to forms via the Clifford map

C =
∑

k

1

k!
C

(k)
i1...ik

dxi1 ∧ . . . ∧ dxik ↔ C =
∑

k

1

k!
C

(k)
i1...ik

γi1...ik . (2.23)

In the supergravity context, it is therefore natural to define the Cliff(6, 6) pure spinors

as a bi-product of the internal supersymmetry parameters

Φ+ = η1
+ ⊗ η2†

+ ,

Φ− = η1
+ ⊗ η2†

− . (2.24)

They can be seen as polyforms via the Fierz identity

η1
+ ⊗ η2†

± =
1

8

6
∑

k=0

1

k!

(

η2†
± γµk ...µ1η

1
+

)

γµ1...µk . (2.25)

The explicit expressions of the two pure spinors can then obtained [18] using the definitions

of last subsection

Φ+ =
|a|2
8
e−iθe

1
2
z∧z(k||e

−ij − ik⊥Ω2) ,

Φ− = −|a|
2

8
z ∧ (k⊥e

−ij + ik||Ω2) . (2.26)

A pure spinor Ψ can always be written as [11]

Ψ = Ωk ∧ eB+iω (2.27)

where Ωk is a holomorphic k-form, and B and ω are real two-forms. The rank k of Ωk is

called the type of the spinor. For the intermediate SU(2) structure where both k|| and k⊥
are non zero, it is possible to “exponentiate” Ω2 and get from (2.26)

Φ+ =
|a|2
8
e−iθk|| e

1
2
z∧z−ij−i

k⊥
k||

Ω2
,

Φ− = −|a|
2

8
k⊥ z ∧ e−ij+i

k||
k⊥

Ω2 , (2.28)

so that the spinors have definite types: 0 and 1. In the case of the SU(3) structure limit

(k⊥ = 0), we get that pure spinors are of type 0 and 3

Φ+ =
|a|2
8
e−iθe−iJ , Φ− = −i |a|

2

8
Ω3 , (2.29)

– 8 –
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while in the case of the other limit, the static SU(2) structure (k|| = 0), the types are 1 and 2:

Φ+ = −i |a|
2

8
e−iθΩ2 ∧ e

1
2
z∧z̄ , Φ− = −|a|

2

8
z ∧ e−ij . (2.30)

Two pure spinors are said to be compatible if they have three common annihilators.

This can be rephrased in a set of compatibility conditions the spinors must satisfy. We

introduce the Mukai pairing for two polyforms Ψi:

〈Ψ1,Ψ2〉 = (Ψ1 ∧ λ(Ψ2))top , (2.31)

where top means the top-form, and λ has been defined in (2.5). It is also useful to recall

the action of a generalized vector X = (x, y) ∈ T ⊕ T ∗ on a polyform

X ·Ψi = xxΨi + y ∧Ψi . (2.32)

Then the compatibility conditions of two pure spinors Φ1 and Φ2 read

〈

Φ1,Φ1

〉

=
〈

Φ2,Φ2

〉

6= 0 , (2.33)

〈Φ1,X · Φ2〉 =
〈

Φ1,X · Φ2

〉

= 0, ∀ X ∈ T ⊕ T ∗ . (2.34)

A pair of compatible pure spinors defines an SU(3)×SU(3) structure on T⊕T ∗. Depending

on the relation between the spinors η1,2
+ , this translates on T into the SU(3), static SU(2)

or intermediate SU(2) structures discussed above. So the formalism of GCG allows to give

a unified characterization of the topological properties a N = 1 vacuum has to satisfy: it

must admit an SU(3)×SU(3) structure on T ⊕T ∗. And so to satisfy this condition, we will

verify that our vacua admit a pair of compatible pure spinors. One can actually show (see

appendix A.3) that the “wedge” structure conditions (2.10), or (2.12) and (2.13), imply the

compatibility conditions in any of the three cases, so one can verify that these conditions

are satisfied, instead of the compatibility ones.

2.4 Conditions for a SUSY vacuum

An N = 1 vacuum described in subsection 2.1 should satisfy the SUSY conditions, the

equations of motion (e.o.m.) and the Bianchi identities (BI) for the fluxes. In [8], the

SUSY conditions given in (2.6) and (2.7) were rewritten as differential conditions on the

pure spinors:

(d−H∧)(e2A−φΦ1) = 0 , (2.35)

(d−H∧)(eA−φRe(Φ2)) = 0 , (2.36)

(d−H∧)(e3A−φIm(Φ2)) =
e4A

8
∗ λ(F ) , (2.37)

with λ defined in (2.5), and with

Φ1 = Φ± Φ2 = Φ∓ , (2.38)

for IIA/IIB (upper/lower) (conventions of [1]). These conditions generalize the Calabi-

Yau condition for fluxless compactifications. Indeed, the first of these equations implies

– 9 –
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that one of the two pure spinors (the one with the same parity as the RR fields) must be

twisted (because of the −H∧) conformally closed. A manifold admitting a twisted closed

pure spinor is a twisted Generalized Calabi-Yau (GCY, see the precise definition in [10, 11]

or [1]). So we will look for vacua on such manifolds.

The e.o.m of the fluxes read

(d+H∧)(e4A ∗ F ) = 0 , d(e4A−2φ ∗H) = ∓e4A
∑

n

Fn ∧ ∗Fn+2 , (2.39)

with the upper/lower sign for IIA/IIB. The BI (we assume no NS source) are

(d−H∧)F = δ(source) , dH = 0 . (2.40)

Here δ(source) is the charge density of the allowed sources: these are space-filling D-

branes or orientifold planes (O-planes). In compactification to four-dimensional Minkowski,

the trace of the energy-momentum tensor must be zero. This is the tadpole cancelation

condition or no-go theorem [6]. Then O-planes are needed since they are the only known

sources with a negative charge, that can therefore cancel the flux contribution to this trace.

As in [1], in this paper we will consider smeared sources, i.e. the sources are not localized

anymore. The RR BI are then assumed to be

(d−H∧)F =
∑

i

QiV
i , (2.41)

where Qi is the source charge and V i is (up to a sign) its internal co-volume (the co-volume

of the cycle wrapped by the source). The sign of the Qi indicates whether the source is a

D-brane (Qi > 0) or an O-plane (Qi < 0). For more details, see section 4 and appendix C.

For intermediate SU(2) structures (for which k⊥
k||

is constant) in the large volume limit

(see subsection 3.4), we will get from our SUSY conditions ((B.9) and (B.10)) that the H

BI is automatically satisfied. Furthermore, for this class of compactifications, it was shown

in [1] that the e.o.m. for the RR fluxes are implied by the SUSY conditions. And it was

shown in [2] that the e.o.m. of H is implied by the SUSY conditions and the BI. So to

sum-up, in order to find a solution, having a pair of compatible pure spinors on an GCY

with at least one O-plane, we will have to verify that the SUSY conditions and the RR BI

are satisfied.

3. Projection conditions and consequences

As discussed in the previous subsection, tadpole cancelation requires the inclusion in the

solutions of O-plane sources. The presence of O-planes implies that the solution has to

be invariant under the action of the orientifold. This imposes some projection conditions

on the fields: one has to mod out by ΩWS(−1)FLσ for O3/O7 and O6, and by ΩWSσ for

O5/O9 and O4/O8. ΩWS is a world-sheet reflection, FL is the left-movers fermion number,

and σ is an involution on the target space. The orientifold action on the pure spinors for

SU(3)×SU(3) manifold were worked-out in [1] (see also [19]). The authors of [1] concluded

that the orientifold projections are only compatible with SU(3) or static SU(2) structures.
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Actually, as shown in [2], intermediate SU(2) structures are also compatible with O5-, O6-

and O7-planes, if one allows a mixing between the two-forms specifying the structure. In

this paper, we will only consider O5- and O6-planes.

In the first subsection we repeat the derivation of the orientifold projection conditions

of [2] for O5- and O6-planes. The resulting conditions on the SU(2) structure forms (j, Ω2

and z) appear to be not very tractable. We then show in the following subsection that it

is possible to rewrite these conditions in a more tractable manner, which will allow us to

find directly solutions. To do so, we introduce the projection (eigen)basis, and then write

the pure spinors in these variables, and discuss their relation to the dielectric ones [13, 14].

Finally, we also give the supersymmetry conditions in the projection basis (details on

the derivation are in appendix B.2), and do the same for some structure conditions in

appendix B.1.

3.1 The orientifold projection

As shown in [2], the first step to derive the orientifold projection on the pure spinors is

to compute those for the internal SUSY parameters. This can be done starting from the

projection on the ten-dimensional SUSY spinorial parameters ǫi, and then reducing to the

internal spinors ηi
±. In our conventions, we get

O5 : σ(η1
±) = η2

± σ(η2
±) = η1

± , (3.1)

O6 : σ(η1
±) = η2

∓ σ(η2
±) = η1

∓ . (3.2)

σ is the target space reflection in the directions transverse to the O-plane. Using the

expressions for the internal spinors given in (2.18), we obtain the following projection

conditions at the orientifold plane:

O5 : eiθ = ±1, z ⊥ O5 , (3.3)

O6 : eiθ free, Re(z) ‖ O6, Im(z) ⊥ O6 . (3.4)

We can reexpress the previous conditions on z in the following way:

O5 : σ(z) = −z ,
O6 : σ(z) = z . (3.5)

As explained in [2], if the G-structures considered are constant (we will assume so), and if

we work on nil/solvmanifolds (which will be our case), these conditions are valid everywhere

(not only at the orientifold plane).

Following [2], starting from the projections on the ηi
±, we derive the projections of the

pure spinors Φ±, and from them those for the SU(2) structure forms (using (3.3) and (3.4)).

To do this last step, one has to know that, as σ is only the reflection due to the orientifold,

it can distributed on every term of a wedge product. Furthermore, λ(. . .) can also be

distributed on wedge products of two forms, provided that one of the two forms is even

– 11 –
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(see (A.20)). So we recover the same projection conditions on the forms as they have in [2]:3

O5 : σ(j) = (k2
|| − k2

⊥)j + 2k||k⊥Re(Ω2) ,

σ(Ω2) = −k2
||Ω2 + k2

⊥Ω2 + 2k||k⊥j , (3.6)

O6 : σ(j) = −(k2
|| − k2

⊥)j − 2k||k⊥Re(Ω2) ,

σ(Ω2) = k2
||Ω2 − k2

⊥Ω2 − 2k||k⊥j . (3.7)

By introducing as in [2]:

O5 : k|| = cos(φ), k⊥ = sin(φ), 0 ≤ φ ≤ π

2
, (3.8)

O6 : k|| = cos
(

φ+
π

2

)

= − sin(φ),

k⊥ = sin
(

φ+
π

2

)

= cos(φ), −π
2
≤ φ ≤ 0 , (3.9)

we get in both cases the more convenient formulas:

σ(j) = cos(2φ)j + sin(2φ)Re(Ω2) ,

σ(Re(Ω2)) = sin(2φ)j − cos(2φ)Re(Ω2) ,

σ(Im(Ω2)) = −Im(Ω2) . (3.10)

3.2 The projection basis

If one is looking for solutions to the projection conditions (3.10), one will notice that they

are not very tractable. A good idea is to work in the projection (eigen)basis:

j|| =
1

2
(j + σ(j)) , j⊥ =

1

2
(j − σ(j)) ,

Re(Ω2)|| =
1

2
(Re(Ω2) + σ(Re(Ω2))) , Re(Ω2)⊥ =

1

2
(Re(Ω2)− σ(Re(Ω2))) . (3.11)

Using the property σ2 = 1 and applying it to the previous equations, we get these more

tractable equations:

j|| (1− cos(2φ)) = sin(2φ) Re(Ω2)|| ,

j⊥ (1 + cos(2φ)) = − sin(2φ) Re(Ω2)⊥ . (3.12)

We also get the following equations:

j|| sin(2φ) = (1 + cos(2φ)) Re(Ω2)|| ,

j⊥ sin(2φ) = −(1− cos(2φ)) Re(Ω2)⊥ , (3.13)

3We use slightly different conventions than in [2] but actually one can start with the following general

expressions which cover both articles’ conventions:

Φ+ =
|a|2
8

e
−iθ

N
2
e

1

||z||2
z∧z

(k||e
−ij − ik⊥Ω2) ,

Φ− = −|a|2
8

√
2

||z||N
2
z ∧ (k⊥e

−ij + ik||Ω2) ,

with |a|, θ, ||z||, ||η+|| = N constant and non-zero, and k||, k⊥ constant, and then one gets the same

projection conditions.
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which are equivalent to the two equations (3.12) if k|| and k⊥ are non-zero. It will be our

case, so we will not use them. If we introduce (assuming that k|| and k⊥ are non-zero)

O5 : γ =
k||

k⊥
,

O6 : γ = −k⊥
k||

, (3.14)

and r = ∓1 for O6/O5 (upper/lower), the projection conditions become for both theories:

σ(Re(z)) = −r Re(z) ,

σ(Im(z)) = −Im(z) ,

σ(Im(Ω2)) = −Im(Ω2) ,

j|| = γ Re(Ω2)|| ,

j⊥ = −1

γ
Re(Ω2)⊥ . (3.15)

In this form, the projection conditions are now much more tractable.

3.3 The pure spinors and the projection basis

In this subsection, we will rewrite the pure spinors in terms of the variables of the projection

basis. But before going back to the pure spinors, let us first give some useful relations (they

are nothing else but a rewriting of the two last projection conditions given in (3.15)):

IIA : k||j|| + k⊥Re(Ω2)|| = 0 , −k⊥j⊥ + k||Re(Ω2)⊥ = 0 ,

IIB : −k⊥j|| + k||Re(Ω2)|| = 0 , k||j⊥ + k⊥Re(Ω2)⊥ = 0 . (3.16)

These allow to write the following relations valid for both theories:

− sin(φ)j + cos(φ)Re(Ω2) =
1

cos(φ)
Re(Ω2)⊥ = − 1

sin(φ)
j⊥ ,

cos(φ)j + sin(φ)Re(Ω2) =
1

sin(φ)
Re(Ω2)|| =

1

cos(φ)
j|| . (3.17)

These last relations (3.17) can also be found by using the definitions of j||, j⊥, Re(Ω2)||, and

Re(Ω2)⊥. One can notice in the previous relation a rotation. We will come back to it soon.

We can now rewrite the pure spinors in (2.28) using the projection basis and the

relations (3.17). The result is very simple:

IIA : Φ+ =
|a|2
8
e−iθk|| e

1
2
z∧z− i

k||k⊥
Re(Ω2)⊥+

k⊥
k||

Im(Ω2)
,

Φ− = −|a|
2

8
k⊥ z ∧ e

i
k||k⊥

Re(Ω2)||−
k||
k⊥

Im(Ω2)
, (3.18)

IIB : Φ+ =
|a|2
8
e−iθk|| e

1
2
z∧z− i

k||k⊥
Re(Ω2)||+

k⊥
k||

Im(Ω2)
,

Φ− = −|a|
2

8
k⊥ z ∧ e

i
k||k⊥

Re(Ω2)⊥−
k||
k⊥

Im(Ω2)
. (3.19)
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Ψ

Ψ

η1
+

a

η2
+

aη+D z.η−D

2

Figure 2: The different spinors and angles (with θ = 0)

Recently, an alternative parametrization of the internal supersymmetry parameters,

and consequently of the pure spinors, was given in [13] and further discussed in [14]

η1
+ = a

(

cos(Ψ)η+D − sin(Ψ)
zη−D

2

)

,

η2
+ = aeiθ

(

cos(Ψ)η+D + sin(Ψ)
zη−D

2

)

, (3.20)

where we still have θ as the difference of phase between η2
+ and η1

+, a and z are the same

as before, ||η+D|| = 1 and Ψ is an angle such as 0 ≤ Ψ ≤ π
4 . This different choice was

proposed in order to study deformations of four-dimensional N = 4 Super Yang-Mills in

the context of AdS/CFT. Typically those deformations should describe the near horizon

geometry of some sort of dielectric branes, hence the name dielectric for the spinor η+D.

Note that η+D is nothing else but (once the phases of the two spinors are equalled) the

mean spinor between η1
+ and η2

+, i.e. somehow their bisector: η+D = 1
2a cos(Ψ) (η

1
++e−iθη2

+).

We have the corresponding picture on figure 2. One can relate the dielectric ansatz to the

previous one, (2.18), with

k|| = cos(φ) = cos(2Ψ), k⊥ = sin(φ) = sin(2Ψ) , (3.21)

η+D = cos

(

φ

2

)

η+ + sin

(

φ

2

)

zη−
2

. (3.22)

Working with η+D and
zη−D

2 instead of η+ and zη−
2 means working with a new SU(2)

structure. And this new SU(2) structure is clearly obtained by a rotation from the previous

one, as one can also get by computing the relations between the SU(2) structure two-forms:

jD = k||j + k⊥Re(Ω2) ,

Re(ωD) = −k⊥j + k||Re(Ω2) ,

Im(ωD) = Im(Ω2) . (3.23)

If one computes the pure spinors from (3.20) [13, 14], one gets the dielectric pure
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spinors4

Φ+ =
|a|2
8
e−iθk|| e

1
2
z∧z− i

k||
jD+

k⊥
k||

Im(ωD)
,

Φ− = −|a|
2

8
k⊥ z ∧ e

i
k⊥

Re(ωD)−
k||
k⊥

Im(ωD)
. (3.24)

Comparing the definitions of the two-forms (3.17) and (3.23), or the expressions for

the pure spinors, (3.18), (3.19) and (3.24), we see that (for IIA/IIB)

jD =
1

k⊥
Re(Ω2)⊥/|| ,

Re(ωD) =
1

k||
Re(Ω2)||/⊥ ,

Im(ωD) = Im(Ω2) . (3.25)

Thus the dielectric SU(2) structure variables are nothing but the eigenbasis of the orien-

tifold projection (modulo a rescaling) ! Actually, this can be easily understood from the

transformation properties of η+D under the orientifold projection5

O6 : σ(η±D) = η∓D ,

O5 : σ(η±D) = eiθη±D . (3.26)

Then the SU(2) bilinears constructed from it will get at most a phase and a conjugation

when being applied σ, hence the three real two-forms jD, Re(ωD) and Im(ωD) are in the pro-

jection eigenbasis, as given by (3.25). Note that these relations between those variables is

a way to understand the rotation that gives the projection basis, as mentioned after (3.17).

Beside providing a tractable basis to solve the orientifold projection conditions, the

dielectric variables/projection basis lead to simpler expressions of the pure spinors and so

much simpler SUSY conditions (see next subsection). Hence this SU(2) structure is a much

better choice to solve our problem, and we will express the equations to be solved in terms of

these variables. For instance, in next subsection, we rewrite the SUSY conditions in terms

of the projection basis. And in appendix B.1, we rewrite a set of SU(2) structure conditions

(implying the compatibility conditions, see appendix A.3) in terms of the projection basis

variables too.

3.4 SUSY equations in the projection basis

In appendix B.2.1, we give the SUSY equations (2.35), (2.36), and (2.37), expanded in forms

for general expressions of the pure spinors. Here we consider a simplified version of those

equations where beside the usual fixing of the parameters leading to (2.26), we choose |a|2 =

eA, and go to the large volume limit, i.e. A = 0 and eφ = gs constant. This is indeed the

regime in which we will look for solutions in the next section. The only remaining freedom

4The computation is the same as using (2.28) and introducing the dielectric SU(2) structure variables

via (3.23).
5To get them, we recall that we have eiθ = ±1 for an O5, and one has to use (3.1) and (3.2).
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is θ that we do not really need to fix. Moreover, we choose to look only for intermediate

SU(2) structure, i.e. with k|| 6= 0 and k⊥ 6= 0 and constant. Taking the coefficients constant

is important because it simplifies drastically the search for solutions (the SUSY conditions

are much simpler), but forbids to get genuinely dynamical SU(2) structure vacua.

Using the projection basis variables and some further simplifications explained in ap-

pendices B.2.1 and B.2.2, the supersymmetry equations finally become

IIA : gs ∗ F4 = −k⊥d(Im(z))

k||H = k⊥d(Im(Ω2))

gs ∗ F2 = −k||d(Im(z)) ∧ Im(Ω2)+
1

k||
d(Re(Ω2)||) ∧ Re(z)

− 1

k⊥
H ∧ Im(z)

gs ∗ F0 =
1

2
k⊥d(Im(z))∧Im(Ω2)

2+
1

k||
H∧Re(z)∧Re(Ω2)||

d(Re(z)) = 0

d(Re(Ω2)⊥) = k||k⊥Re(z) ∧ d(Im(z))

H ∧ Re(z) = −k⊥
k||
d(Im(z) ∧ Re(Ω2)||) , (3.27)

IIB : k||H = k⊥d(Im(Ω2))

k⊥e
iθgs ∗ F3 = d(Re(Ω2)||)

k⊥e
iθgs ∗ F1 = H ∧ Re(Ω2)||

d(Re(z)) = 0

d(Im(z)) = 0

Re(z) ∧H = −k⊥
k||

Im(z) ∧ d(Re(Ω2)⊥)

Im(z) ∧H =
k⊥
k||

Re(z) ∧ d(Re(Ω2)⊥)

Re(z) ∧ Im(z) ∧ d(Re(Ω2)||) = −H ∧ Im(Ω2) . (3.28)

4. Solutions

4.1 Set-up, method, and discussion

In [1], examples of four-dimensional Minkowski supersymmetric flux vacua, with a Gener-

alized Calabi-Yau as internal manifold, were found: they correspond to nilmanifolds and

solvmanifolds6 with non trivial fluxes. As already mentioned in introduction, the analysis

6Nil/solvmanifolds, also known as twisted tori, can be seen as iterated fibrations of tori over other tori.

They are parallelizable manifolds, namely they admit a basis of real globally defined one-forms, which we
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of [1] did not take into account the possibility of an intermediate SU(2) structure on the

internal manifold. Some examples of solutions with such a structure were found in [2] via

T-dualities from a warped T 6 with an O3. In this paper, we extend the analysis of [1] and

find, among nil/solvmanifolds, new vacua with intermediate SU(2) structure that cannot

be T-dualized back to a warped T 6 with an O3.

Before describing our new solutions, we briefly sketch the method we followed. We

first choose a nil/solvmanifold among the list given in [1], we specify the theory (IIA/IIB)

and the internal directions of an O-plane. In this paper we will only consider O5- and

O6-planes (see beginning of section 3). The orientifold projection should be compatible

with the manifold algebra (see [1] for the complete list of the allowed orientifolds for

each manifold). Then, one has to find a pair of compatible pure spinors on the internal

manifold. The general form of the pure spinors is given in (2.26) where, in order to have

an intermediate SU(2) structure, we take k|| 6= 0 and k⊥ 6= 0, and constant. The other

coefficients in the solutions will also be taken constant. Moreover, we choose |a|2 = eA,

and go to the large volume limit, i.e. where A = 0 and eφ = gs is constant.7 We will use

the set of new variables, the projection basis, which corresponds to the appropriate SU(2)

structure in this problem, since many equations written in these variables get simplified

(see section 3). We then solve the projection conditions (3.15) so that these pure spinors

are compatible with the O-plane, and then the SU(2) structure conditions (B.2) to (B.6),

and (B.7), getting automatically that the pure spinors are compatible (see appendix A.3).

This pair must satisfy the SUSY conditions, implying that one of them is closed and

the manifold is thus a GCY. Still using the projection basis, we then solve the SUSY

equations (3.27) or (3.28). For every solution, we can then introduce a local basis of

complex one-forms (z1, z2, z, z1, z2, z), where we identify one of them with the holomorphic

one-form z of the SU(2) structure, and write the real and the holomorphic two-forms of

the SU(2) structure as

Ω2 = z1 ∧ z2 j =
i

2
(t1z

1 ∧ z1 + t2z
2 ∧ z2 + bz1 ∧ z2 − bz1 ∧ z2) , (4.1)

with b = br + ibi and t1, t2, br, bi real.8 We will give our solutions in the previous form.9

With the almost complex structure (see footnote 2) defined trivially in the local com-

plex basis (z1, z2, z, z1, z2, z) by J λ
µ = iδ λ

µ , J λ
µ = −iδ λ

µ ((anti)holomorphic indices),

will note ei, i = 1 . . . 6. These manifolds are group manifolds, and can be defined by their “algebra”. We

will use for it the following notation: (0, 0, 0, 12, 23, 14 − 35), for instance, means de1 = de2 = de3 = 0,

de4 = e1 ∧ e2, etc. with d the exterior derivative. For more details on these manifolds, see for instance [1].
7In [1], they give a method to localize the solutions obtained by reintroducing afterwards the warp

factor. But these techniques only work for solutions with one source, while we will obtain solutions with

two sources. So we will not try to get solutions in another regime than in the large volume limit, with

smeared sources and constant coefficients in the solutions. As discussed for the SUSY equations, this forbids

to obtain genuinely dynamical SU(2) structure solutions.
8Note that the choice of this basis is not unique. This freedom will appear in particular in the limits

(subsection 4.3).
9Note that the metric we will then compute from it will be block diagonal, so the left SU(2) structure

conditions, namely the contractions with z and z, are clearly satisfied by these expressions.
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and the Kähler form defined as in (2.16), one can then compute the hermitian metric:

gµν = −J λ
µ Jλν gµν = −J λ

µ Jλν . (4.2)

In this local complex basis, we obtain generically10

g =
1

2



















0 0 0 t1 b 0

0 0 0 b t2 0

0 0 0 0 0 1

t1 b 0 0 0 0

b t2 0 0 0 0

0 0 1 0 0 0



















(4.3)

To check its definite-positiveness, one has to verify that for any µ, gµµ > 0 (coefficients of

the inverse metric), which is equivalent to ti
(t1t2−|b|2)

> 0, i = 1, 2. Actually, the SU(2)

structure condition (A.18), that the solutions verify, gives that t1t2 − |b|2 = 1. Hence the

definite-positiveness of the metric becomes equivalent to t1 > 0 and t2 > 0.

The final step is to compute the RR fluxes, defined by the last SUSY equation (2.37),

and to check whether they solve the Bianchi identities. Note that the metric is needed to

compute the RR fluxes, because of the Hodge star. We compute the BI, and then we can

determine the sources and their charges (see (2.41)). Since the sources are smeared, the

BI will give us directly the directions of the co-volume V i of the cycles wrapped by the

sources. We only have to compute the correct normalization of these co-volumes. To do

so, we use, as done in [1], the following identity, motivated in appendix C, and built from

the calibration of the sources [20, 2]:

〈

V i, e3A−φIm(Φ2)
〉

=
1

8gs
V , (4.4)

where V is the internal volume form, defined the following way (see (2.33)):

〈

Φ±,Φ±

〉

=− i
8
||η1

+||2||η2
±||2V , (4.5)

and we have
∫

M6
V > 0. Note that this normalization condition is not exactly the same

as in [1].11 Once we have identified V i, we deduce the source charge.12 If it is negative,

we deduce we have an orientifold, and we verify that the manifold and our solution are

compatible with its projection.

We would like to stress that our search, on nil/solvmanifolds, for solutions with in-

termediate SU(2) structure is not meant to be exhaustive, our interest being to verify the

possibility of having solutions of this kind that are not obtainable via T-duality. We decided

10Note that we give here the coefficients of the metric tensor: they are symmetric, but do not have to be

real, since only the tensor has to be real. To get the metric in the real basis (ei, i = 1 . . . 6), one just has

to perform a change of basis.
11In [1], they did not have the 1

8gs
factor, that we explain in appendix C.

12Note that using this condition and our conventions for the Hodge star, it can be shown as in [1] that
P

i
Qi < 0, and so recover the need for orientifolds as sources, because of their negative charge.
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Manifold O5 O6

n 3.14 13, 15, 26, 34, 45 none

s 2.5 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345

Table 1: Directions of the possible O5 and O6 on the manifolds considered

to look at the manifolds for which non T-dual solutions with SU(3) or static SU(2) structure

were found in [1] (the nilmanifold (0,0,0,12,23,14-35), noted n3.14, and the solvmanifold

(25,-15, α 45, - α 35, 0,0), noted s2.5) with the intuitive hope that some intermediate

SU(2) structure might be found on them, which might give back their solutions in the

limits k⊥/|| → 0. We indeed find three new solutions which we will describe in the next

subsection. In subsection 4.3, we discuss their possible limits to the solutions of [1]. Note

that these solutions cannot be T-dualized back to a warped T 6 with an O3 for the same

reason as in [1]: one should T-dualize back along the internal directions chosen for the O5

or the O6. But one can see from the algebras of the manifolds that there is no isometry in

these directions (an isometry direction should not appear in the algebra). In subsection 4.4,

we will discuss the possibility of finding some other solutions.

Finally, let us say a word about the directions chosen for the orientifolds in our solu-

tions. In [1] they give, for each manifold to be considered, the orientifolds compatible with

the algebra (i.e. the involution σ due to the O-plane must commute with the algebra). On

the two manifolds we are going to consider at first, the possible directions for the O5 and the

O6 are given in table 1. Among these possibilities, we are going to look for solutions only

for one set of directions on each manifold. So one could ask about the other directions. As

explained in subsection 4.4 and in appendix D, one can actually consider the symmetries of

the algebra to relate several possible O-planes. Furthermore, if one looks for solutions with

several (not completely overlapping) O-planes, one can prove, as we do in appendix D, that

it is enough to look for solutions with the sources in the directions we are going to choose.

4.2 Intermediate SU(2) solutions

We are now going to give the solutions found, with detailed steps for the first solution, and

then quicker for the two others.

4.2.1 First solution

We look for IIB solutions on the nilmanifold n3.14 which has the following algebra:

(0, 0, 0, 12, 23, 14−35), with an O5 in the 45 directions. We find the general solutions to the

list of constraints (3.15), (B.2), (B.3), (B.4), (B.5), (B.6), (B.7) and (3.28). The solutions

depend on the following real (constant) parameters: b12, b23, b26, b24, b46, c24, c46, f1, f3, k||

(k⊥ can be replaced everywhere by
√

1− k2
||). These parameters have to satisfy certain

conditions so that the solution is genuinely one: b26 and b24c46−c24b46 have to be non-zero,

f1 or f3 has to be non-zero, k|| has to be nor 0 neither 1. As explained, after finding the
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solutions, we expressed them as in (4.1) with for the first solution:

z = (f1 + if3)e
1 + (f3 − if1)e

3 ,

z1 = b12e
1−b23e3−(b24+ic24)e

4+

(

−i(b24+ic24)+
k2
⊥(b46−ic46)(b24c46−c24b46)

b246+k2
||c

2
46

)

e5−b26e6 ,

z2 = e2 +
(b46 + ic46)

b26
e4 + i

(b46 + ic46)

b26
e5 ,

br = −
b24b46 + c46c24k

2
||

(b24c46 − c24b46)k||k⊥
, bi = −

k||

k⊥
,

t1 = −
b246 + c246k

2
||

b26(b24c46 − c24b46)k||k⊥
, t2 = −

(b224 + c224k
2
||)b26

(b24c46 − c24b46)k||k⊥
. (4.6)

There is a second solution which is obtained from the first one by conjugating z and

doing e5 → −e5. The conditions on the coefficients for this second solution are the same.

As explained, the definite-positiveness of the metric is given by

b26(b24c46 − c24b46) < 0 . (4.7)

For the general solution given before, we have

H =
k⊥
k||

(

c46b23 − b46b12
b26

e1 ∧ e2 ∧ e3 + c46(e
1 ∧ e2 ∧ e6 − e3 ∧ e4 ∧ e5)

−b46(e1 ∧ e4 ∧ e5 + e2 ∧ e3 ∧ e6)
)

. (4.8)

The general metric in the real basis can be computed with the method described

previously, and its determinant |g| is:

(f2
1 + f2

3 )2(−b46c24 + c46b24)
2(c246 + b246)

2

(b246 + k2
||c

2
46)

2
(4.9)

(clearly non-zero). The general expression of the metric is actually quite complicated

because there are many parameters, so we will not give it here. Furthermore it is difficult to

compute properly its eigenvalues, and then, to use them to compute the Bianchi identities.

So let us go to a simpler case, in order to show that there is at least one solution. To do

so, we can make the following allowed choice of the solution’s parameters:

b12 = b23 = b46 = c24 = 0 . (4.10)

This choice is interesting because then, the metric becomes diagonal (in the ei basis !): its
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coefficients are given by:13

g =























f2
1 + f2

3 0 0 0 0 0

0 − b24b26
c46k||k⊥

0 0 0 0

0 0 f2
1 + f2

3 0 0 0

0 0 0 − b24c46k⊥
b26k||

0 0

0 0 0 0 − b24c46k⊥

k3
||
b26

0

0 0 0 0 0 −k||c46b26
k⊥b24























(4.11)

Notice that with these eigenvalues, we can recheck the definite-positiveness of the metric,

and we get the same condition as the one found before (4.7) with the hermitian metric:

the eigenvalues are strictly positive if and only if

b26b24c46 < 0 . (4.12)

To get the Bianchi identities, we first have to be able to perform a (six-dimensional)

Hodge star ∗ to get the RR fluxes (see the definitions of the fluxes in the SUSY condi-

tions (3.28)), that is where the metric is used (see appendix A.1 for the conventions on

the Hodge star). When we have a RR flux, we can then compute the Bianchi identity, and

then we identify the sources obtained (see subsection 4.1) and see whether the O-planes

are compatible with the manifold and the solution. Here, we get the following fluxes:

H =
k⊥c46
k||

(

−e3 ∧ e4 ∧ e5 + e1 ∧ e2 ∧ e6
)

,

F3 =
e−iθ|c46|k2

||

gs|b24|

(

− k⊥b24c46
k2
||
b26

(

e3 ∧ e4 ∧ e6 +
1

k2
||

e1 ∧ e5 ∧ e6
)

+
b26
k⊥

(

− 1

k2
||

e3 ∧ e5 ∧ e6 + e1 ∧ e4 ∧ e6
)

)

,

F1 =
e−iθc46k||

gs|c46b24|

(

−b26e1 +
b24c46k

2
⊥

k2
||b26

e3

)

. (4.13)

We then compute the Bianchi identities:

d(F1) = 0 , H ∧ F3 = 0 , (4.14)

d(F3)−H ∧ F1 =
2e−iθ|c46|
gs|b24|k2

||k⊥

(

k2
⊥b24c46
b26

e1 ∧ e2 ∧ e3 ∧ e6 + b26k
2
|| e

1 ∧ e3 ∧ e4 ∧ e5
)

.

We see that there is no source for F1 (neither for F5), which is somehow expected as we

did not put any. We see that F3 has two sources, one along the directions 45 and the

other along 26. As explained in subsection 4.1, to determine their charges, we first need to

13Note that our convention ||z||2 = zµzµ = 2 is already implemented in the metric, by its construction

from the Kähler form in which this norm appears. One can verify this point by computing this norm using

either the hermitian or the real basis metric. Then, f2
1 + f2

3 has nothing to do with this norm, but is only

the measure related to the metric coefficients, in the real basis.
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compute their co-volumes. To do so, we first compute V . From (4.5), using (2.26) for the

pure spinors, and then the form (4.1) of the solutions, we get:

V =
1

8i
z ∧ z ∧Ω2 ∧ Ω2 = −Re(z1) ∧ Im(z1) ∧Re(z2) ∧ Im(z2) ∧ Re(z) ∧ Im(z) . (4.15)

Note that going to the real basis given by the ei, by replacing the zi for each solution

found, one generically gets:

V = C e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 . (4.16)

We chose the orientability conventions ǫ123456 = 1 (see appendix A.1), so C is clearly

related to
√

|g|, but also to the determinant14 of the matrix allowing to go from the zi to

the ei. So we get C > 0, an important point to determine the sign of the charges. Having

computed V , one can determine the V i precisely using the relation (4.4): we know already

that V i is along the transverse directions of the source, and (4.4) gives the normalization

factor. Note one can rewrite (4.4), using (2.26) in the large volume limit, as

IIA : V i ∧
(

Re(z) ∧ Re(Ω2)|| − k2
|| Im(z) ∧ Im(Ω2)

)

= k|| V ,

IIB : V i ∧
(

Re(Ω2)|| + k⊥k|| Re(z) ∧ Im(z)
)

= k⊥e
iθ V . (4.17)

Finally, for the first solution, we can rewrite the BI as:

V 1 = −k⊥e
iθ(f2

1 + f2
3 )b26

k2
⊥

e1 ∧ e2 ∧ e3 ∧ e6,

V 2 = −k⊥e
iθ(f2

1 + f2
3 )b24c46

k2
||b26

e1 ∧ e3 ∧ e4 ∧ e5 ,

d(F3)−H ∧ F1 = − 2|c46|
gs|b24|k2

||C

(

(k⊥b24c46)
2

b226k
2
||

V 1 +
(k||b26)

2

k2
⊥

V 2

)

,

with C =
(f2

1 + f2
3 )b24c46
k2
||

> 0 . (4.18)

So one can read directly the charges (see (2.41)) and see that Q1 < 0, Q2 < 0, hence

we have two O-plane sources. Both are compatible with the manifold. Note that it is

interesting to see this second source appearing while we only imposed the first one.

With the choice made for the parameters, the solution is (we do not display j since it

is deduced easily from Ω2 with the projection conditions):

Re(Ω2)|| = −b24c46k
2
⊥

k2
||b26

e4 ∧ e5 + b26e
2 ∧ e6 ,

Re(Ω2)⊥ = b24e
2 ∧ e4 − c46e5 ∧ e6 ,

Im(Ω2) =
b24
k2
||

e2 ∧ e5 + c46e
4 ∧ e6 . (4.19)

14Note that checking |g| 6= 0 then verifies that the zi chosen form indeed a basis. In general, we actually

already have it guaranteed because of (B.7).
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It is clear from this formulation that what is parallel or orthogonal under σ45 is also under

σ26. The same goes for z which only has components along e1 and e3. So the solution is

clearly compatible with the projections of both sources.

Note that we will not find any T-dual solution to this first solution, while the two next

solutions are T-duals to one another. This can be understood from table 1 since no O6 is

compatible with n3.14.

4.2.2 Second solution

We proceed in the same way as for the first solution. We look for IIB solutions on the

solvmanifold s2.5 which has the following algebra: (25,−15, α45,−α35, 0, 0), α ∈ Z, with

an O5 in the 13 directions. The general solution to the usual list of constraints depends on

the following real (constant) parameters: b25, b45, b24, b12, b23, c12, c23, f5, f6, g5, g6, k||, and

of course α. These parameters have to satisfy certain conditions so that the solution is gen-

uinely one: b24, f5g6−f6g5 and c23b12−c12b23 have to be non-zero, k|| has to be neither 0 nor

1, and α has to be ±1. The solution is expressed in the usual manner with the following zi:

z = (f5 + ig5)e
5 + (f6 + ig6)e

6 ,

z1 = (b12 + ic12)e
1 − (b23 + ic23)e

3 − b24e4 − b25e5 ,

z2 = e2+
αk2

⊥(c23b12 − c12b23)2
(b212+c212k

2
||)(b12+ic12)b24

e3−α(b23+ic23)

(b12 + ic12)
e4− 1

b24

(

b45+
αb25(b23 + ic23)

(b12 + ic12)

)

e5 ,

br =
k⊥b12c12

k||(b
2
12 + c212)

, bi =
k⊥b

2
12

k||(b
2
12 + c212)

,

t1 = −αk⊥(c23b12 − c12b23)
k||b24(b

2
12 + c212)

, t2 = −
b24(b

2
12 + c212k

2
||)

αk⊥k||(c23b12 − c12b23)
. (4.20)

The definite-positiveness of the metric is given by

αb24(c23b12 − c12b23) < 0 . (4.21)

For the general solution given before, and given that α2 = 1, we have H = 0, and

deduce

F1 = 0 . (4.22)

The only remaining flux is then F3. As for the first solution, the general metric is quite

complicated, and it is difficult to compute its eigenvalues, so we will go to a simpler case.

We just mention here its determinant, once again clearly non-zero:

(b23c12 − c23b12)4(f5g6 − g5f6)
2

(c212k
2
|| + b212)

2
. (4.23)

To simplify the metric, we first choose b25 = b45 = 0. Then to get a diagonal metric, one

would need b23b12 + c12c23k
2
|| = 0, g6g5 + f6f5 = 0. We choose this stronger simplification:

b25 = b45 = b23 = c12 = g5 = f6 = 0 . (4.24)
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The metric is then:

g =























−αc23b12k⊥
k||b24

0 0 0 0 0

0 − b24b12
k⊥k||αc23

0 0 0 0

0 0 −αk⊥c323k||

b12b24
0 0 0

0 0 0 − c23k||b24α

b12k⊥
0 0

0 0 0 0 f2
5 0

0 0 0 0 0 g2
6























(4.25)

We recover the definite-positiveness of the metric (coherent with (4.21)):

αb24c23b12 < 0 . (4.26)

Using the same method as before, we then get:

F3 =
e−iθ(−k2

⊥c
2
23 + b224) |g6|

gsk⊥b24|f5|
(e2 ∧ e3 ∧ e6 + α e1 ∧ e4 ∧ e6) , (4.27)

d(F3) = 2
e−iθ(−k2

⊥c
2
23 + b224) |g6|

gsk⊥b24|f5|
(e1 ∧ e3 ∧ e5 ∧ e6 − α e2 ∧ e4 ∧ e5 ∧ e6) . (4.28)

We see that F3 has two sources, the one along 13 as expected, and we discover that a

second one is then absolutely needed: one along 24. As before, we compute the co-volumes

and get:

V 1 = −k⊥e
iθf5g6αc

2
23

b24
e1 ∧ e3 ∧ e5 ∧ e6, V 2 =−e

iθf5g6b24
k⊥

e2∧e4∧e5∧e6 , (4.29)

d(F3) = −2(b224−k2
⊥c

2
23)|g6|c223

gs|f5|C

(

1

k2
⊥c

2
23

V 1− 1

b224
V 2

)

, with C = f5g6αc
2
23 > 0 . (4.30)

The nature of the sources depends on the sign of their charges, which depends here on

the value of the parameters. But we can clearly see that there is one O-plane and one

D-brane. In both cases, the O-plane is compatible with the manifold. Note also that we

clearly have
∑

iQi < 0.

The solution with the simple choice of parameters is:

Re(Ω2)|| =
αk2

⊥c
2
23

b24
e1 ∧ e3 + b24e

2 ∧ e4 ,

Re(Ω2)⊥ = b12e
1 ∧ e2 −

αc223k
2
||

b12
e3 ∧ e4 ,

Im(Ω2) = −αc23e1 ∧ e4 + c23e
2 ∧ e3 . (4.31)

As for the first solution, it is clear from this formulation that what is parallel or orthogonal

under σ13 is also under σ24. The same goes for z which has only components along e5 and

e6. So the solution is clearly compatible with the projections of both sources (in case they

are O-planes).
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4.2.3 Third solution

We proceed as for the previous solutions. We look for IIA solutions on the solvmani-

fold s2.5 which has the following algebra: (25,−15, α45,−α35, 0, 0), α ∈ Z, but now

with an O6 in the 136 directions. We are going to see that this solution is T-dual

to the second one, so there will be a lot of similarities between the two. The solu-

tion to the usual list of constraints depends on the following real (constant) parameters:

b25, b45, b24, b12, b23, c12, c23, f6, g5, k||, α which have to satisfy almost the same conditions as

the second solution does: b24, f6g5 and c23b12 − c12b23 have to be non-zero, k|| has to be

neither 0 nor 1, and α has to be ±1. The general solution is expressed in the usual manner

with the following zi:

z = ig5e
5 + f6e

6 ,

z1 = (b12 + ic12)e
1 − (b23 + ic23)e

3 − b24e4 − b25e5 ,

z2 = e2+
αk2

||(c23b12 − c12b23)2

(b212+c212k
2
⊥)(b12+ic12)b24

e3−α(b23+ic23)

(b12 + ic12)
e4− 1

b24

(

b45+
αb25(b23+ic23)

(b12 + ic12)

)

e5 ,

br = − k||b12c12

k⊥(b212 + c212)
, bi = − k||b

2
12

k⊥(b212 + c212)
,

t1 =
αk||(c23b12 − c12b23)
k⊥b24(b

2
12 + c212)

, t2 =
b24(b

2
12 + c212k

2
⊥)

αk⊥k||(c23b12 − c12b23)
. (4.32)

The definite-positiveness of the metric is given by

αb24(c23b12 − c12b23) > 0 . (4.33)

For the general solution given before, and given that α2 = 1, we have H = 0 and

d(Im(z)) = 0. Hence we deduce

F0 = 0 ,

F4 = 0 . (4.34)

The only remaining flux is then F2. The general metric determinant is (clearly

non-zero):

(b23c12 − c23b12)4g2
5f

2
6

(c212k
2
⊥ + b212)

2
. (4.35)

For the same reasons as for the previous solutions, we go to a simpler case. We first

choose b25 = b45 = 0. Then to get a diagonal metric, one would need b23b12 + c12c23k
2
⊥ = 0.

We choose this stronger simplification:

b25 = b45 = b23 = c12 = 0 . (4.36)
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The metric is then:

g =























αc23b12k||

k⊥b24
0 0 0 0 0

0 b24b12
k||k⊥αc23

0 0 0 0

0 0
αk||c

3
23k⊥

b12b24
0 0 0

0 0 0 c23k⊥b24α
b12k||

0 0

0 0 0 0 g2
5 0

0 0 0 0 0 f2
6























(4.37)

We recover the definite-positiveness of the metric (coherent with (4.33)):

αb24c23b12 > 0 . (4.38)

Using the same method as before, we then get:

F2 =
(−k2

||c
2
23 + b224) |f6|

gsk||b24f6|g5|
(e2 ∧ e3 + α e1 ∧ e4) , (4.39)

d(F2) = 2
(−k2

||c
2
23 + b224) |f6|

gsk||b24f6|g5|
(e1 ∧ e3 ∧ e5 − α e2 ∧ e4 ∧ e5) . (4.40)

We see that F2 has two sources, the one along 136 as expected, and we discover that a

second one is then absolutely needed: one along 246. As before, we compute the co-volumes

(see (4.17)) and get:

V 1 =
k||g5αc

2
23

b24
e1 ∧ e3 ∧ e5, V 2 =

g5b24
k||

e2 ∧ e4 ∧ e5 (4.41)

d(F2)=−
2(b224−k2

||c
2
23)|f6|c223

gs|g5|C

(

1

k2
||c

2
23

V 1− 1

b224
V 2

)

, with C=−g5f6αc
2
23>0 . (4.42)

The nature of the sources depends on the sign of their charges, which depends here on

the value of the parameters. But we can clearly see that there is one O-plane and one

D-brane. In both cases, the O-plane is compatible with the manifold. Note also that we

clearly have
∑

iQi < 0.

The solution with the simple choice of parameters is:

Re(Ω2)|| =
αk2

||c
2
23

b24
e1 ∧ e3 + b24e

2 ∧ e4 ,

Re(Ω2)⊥ = b12e
1 ∧ e2 − αc223k

2
⊥

b12
e3 ∧ e4 ,

Im(Ω2) = −αc23e1 ∧ e4 + c23e
2 ∧ e3 . (4.43)

It is clear from this formulation that what is parallel or orthogonal under σ136 is also under

σ246. The same goes for Re(z) which is along e6 and Im(z) which is along e5. So the solution

is clearly compatible with the projections of both sources (in case they are O-planes).

We claimed that this solution was T-dual to the second one, with, obviously from

the sources, a T-duality in the e6 direction. Note that e6 is a component of z. This can
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SU(3) Int. SU(2) Stat. SU(2)

Φ+ 0 ←− 0 99K 2

Φ− 3 L99 1 −→ 1

Table 2: Pure spinors types and limits.

be understood the following way. In [21], they derived the T-duality rules for the GCG

pure spinors, summed-up in [1]. Using these rules, and the SU(2) structure contraction

properties (A.13) and (A.16), one can show easily that a T-duality in a direction given Re(z)

or Im(z) is just the exchange of the two pure spinors (3.18) and (3.19), modulo a possible

phase. This is because the terms in z in the pure spinors get exchanged by the T-duality.

The exchange of the pure spinors modulo a phase can be summarized by for instance:

k⊥ → −k||, k|| → k⊥ . (4.44)

Going from one theory to the other, the two pure spinors are always exchanged in the

SUSY equations. So with the previous T-duality, a solution in one theory becomes

a solution in the T-dual theory. Hence taking a solution in one theory, doing the

change (4.44), one gets a T-dual solution in the other theory, where the T-duality has been

done in Re(z) or Im(z) direction. This is exactly what happens between the second and

the third solution, that is why we can say they are T-dual. Note that we also understand

from (4.44) why an SU(3) structure is dual to a static SU(2) structure, as it is the case

for the solutions in [1] (see next subsection).

4.3 SU(3) or static SU(2) structures limits

In [1], SU(3) or static SU(2) structure solutions were found on the manifolds we have just

studied. So it is interesting to see what happens to our solutions when we take one of those

two limits: it would be somehow natural to recover the solutions of [1]. It was at first the

kind of intuition that led us to look for intermediate SU(2) solutions on these manifolds.

To take the limit on our solutions, one has two options: taking the limit of the pure spinors,

or taking the limit of the structure forms. Taking the limit of the pure spinors might not

be a good idea. Indeed, we know pure spinors have different types (see subsection 2.3)

for each G-structure, so there might be a problem when taking the limit. More precisely,

only one of the two spinors keeps the same type in the limit, so this pure spinor might

transform smoothly, while the other might not. This is summed-up in table 2, with the

plain arrows indicating the smooth limits and the dashed ones indicating the limits where

there might be a problem. We recover this point when considering the dielectric pure

spinors expressions (3.24): when one replaces first jD and Re(ωD) by their expressions,

and then takes the limit, one does not get the correct expressions for the pure spinors. To

get them right, one has to use the following prescription: first take the limit of jD and

Re(ωD), and then the limit of the expression obtained.

This prescription is more in favor of the second option: taking the limit of the structure

forms, and that is what we will do. Looking at the expressions of the dielectric forms jD
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SU(3) Static SU(2)

k⊥ → 0 k|| → 0

IIA ( 1
k||

)Re(Ω2)|| → Re(Ω2) ( 1
k⊥

)Re(Ω2)⊥ → Re(Ω2)
1

k⊥
Re(Ω2)⊥ → j − 1

k||
Re(Ω2)|| → j

IIB ( 1
k||

)Re(Ω2)⊥ → Re(Ω2) ( 1
k⊥

)Re(Ω2)|| → Re(Ω2)
1

k⊥
Re(Ω2)|| → j − 1

k||
Re(Ω2)⊥ → j

Table 3: Limits of structure forms.

and ωD in (3.23), we see that their limits give straightforwardly the forms of the limit

structures. Actually, we prefer to use the projection basis Re(Ω2)||, Re(Ω2)⊥ and Im(Ω2),

as we gave our solutions with these variables. More precisely, we are going to take the

limit of Im(Ω2) and 1
k...

Re(Ω2)..., where . . . stands for || or ⊥. Doing so, we also recover the

forms of the limit structures, as one can see from (3.25) or (3.17). The results are given in

table 3.15 It is clear that 1
k...

Re(Ω2)... is not the best choice for taking the limit since k|| or

k⊥, assumed non-zero, have to go to zero.16 Indeed, one can see from the previous arrays

that Ω2 is always recovered smoothly while j is not recovered very easily. For instance in

the case IIA and SU(3) limit, k⊥ and Re(Ω2)⊥ both go to zero, and only their fraction

is supposed to give back j. To get a well-defined limit, we should have a non-zero j, and

so we must have in the previous example Re(Ω2)⊥ ∼ k⊥f2 → 0, where f2 stands for a

constant real two-form. Imposing this last condition will give us the behaviour of some

of our parameters. It can also sometimes lead to inconsistencies such as the volume form

going to zero, and then we can say that there is no limit solution.

Here is how we will proceed. By first studying the limit to j, we get conditions on the

behaviour of our parameters: some go to zero in a specific way, as just explained. Using

them, we work out the limit to Ω2 (extrapolated to Ω3 in the SU(3) case), and manage to

get the zi of [1] solutions, noted zi
s, by factorizing the form as they do. Then we work out

completely the limit to j (extrapolated to J in the SU(3) case), and find the needed tis
and bs (same notations as (4.1)) to get their solution. Finally, we verify that we have the

same fluxes as they do when taking the limit on ours.

The validity of this procedure could be discussed further. In particular, we do recover

the structure forms found in [1] (modulo global normalization factors) as we find maps

between their parameters and ours. But there is a possible mismatch for the H flux in

the static SU(2) limit, as one can see from its definition in the SUSY conditions (3.27)

or (3.28). Indeed, if we did not find any H in the intermediate case, we cannot take its

limit to recover an H in the static SU(2) limit, while the SUSY conditions allow for a

non-trivial H in this limit. This situation will happen for our third solution, as they do

15Note that we recover in these limits the fact that, according to the projection conditions (3.10), j and

Re(Ω2) (and Im(Ω2)) of the limit structures are the projection eigenbasis.
16The difficulties that can occur are related to the one just explained for the pure spinors, since they

both are related to the assumption of k|| and k⊥ being non-zero.
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find a possible H in [1] while we do not. For our second solution, this problem could also

have occurred, but no H was found in [1]. Note that if there is a mismatch with H, then

there is possible one with the other fluxes, as we can see from their definitions.

4.3.1 Limits of the first solution

Let us first consider the SU(3) limit of the first solution which should correspond to “Model

1” of [1] (same theory, same manifold, same orientifold(s)). Imposing that Re(Ω2)|| goes

to zero (∼ k⊥) and comparing with their Js gives these behaviours for our parameters:

b12 ≪ k⊥, b23 ≪ k⊥ and b26 ∼ −k⊥ (with a possible positive constant17 that we will not

consider for simplicity). Note that a priori in our solution b12 and b23 could be zero but b26
could not, so can we put it to zero? This is actually possible only when taking the limit, we

forbade it when looking for solutions because we restricted ourselves to pure intermediate

cases. One criteria to verify that the limit is well-defined is that the six-form volume must

not go to zero. And b26 actually does not appear in it, as one can see from the determinant

of the metric (4.9), so it is fine. So using these behaviours of our parameters and the limits

given in the array, we get their Ω3s and Js with a global normalization difference. The

normalization factor affects both Ω3 and J so that the normalization condition (2.10) is

still satisfied for both our limits and the forms in [1]. We decide to take this factor into

account by rescaling some of the zi
s and the tis to match the one we have when taking the

limit. We get:18

z1 =(f1+if3)(e
1−ie3), z2 =e2+iτe6, z3 =(b24+ic24)(e

4+ie5), with τ= i
(b46+ic46)

(b24+ic24)
,

(4.45)

t1 = 1, t2 = − 1

τr
, t3 = −τr, with τr = Re(τ) . (4.46)

Looking at our fluxes, we get that H → 0 as in [1], and we deduce that F1 → 0 when

we look at the SUSY conditions (3.28). To compare the F3, we go to the simpler case we

chose for our coefficients (4.10): it gives Im(τ) = 0. In this case, we recover F1 → 0 when

looking at its expression. Moreover, taking the limit on our F3, we recover the solution

of [1], once the tis are rescaled as explained.

Let us now consider the SU(2) limit. Looking at the condition Re(Ω2)⊥ → 0, one gets

at least b46 ∼ c46 → 0 (with a possible constant), and b24 → 0. But this is not allowed,

because the volume form would go to zero (see for instance (4.9)). So we recover the

statement of [1]: there is no static SU(2) limit. Note that a T-dual on this manifold to

the SU(3) limit would have been a static SU(2) structure with an O6. Then, the fact that

there is no static SU(2) on this manifold can also be understood by the fact that there is

no O6 compatible, according to table 1.

17The sign comes from the study of the C appearing in the charges computation and the definite-

positiveness of the metric.
18Note that we have here an example of a different choice for the zi, mentioned in subsection 4.1. So

it would have been surprising to recover theirs by taking the limit of our zi. The way we recovered their

solution is a reparametrization, since we computed the two-form in the limit and then refactorized it in the

way they did.
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4.3.2 Limits of the second solution

Let us first consider the SU(3) limit of the second solution. We mention first that no

corresponding solution is mentioned in [1]. There can be several reasons for this, among

them one can be that there is no solution with fluxes which is non T-dual to a warped T 6

with an O3. We actually do find such a solution, which should be the T-dual to the static

SU(2) limit of our third solution (see next subsection). So we will use similar notations.

Considering as usual Re(Ω2)|| → 0 (∼ k⊥), we get b25 ∼ y1k⊥, b45 ∼ y2k⊥, b24 ∼ xk⊥
with y1, y2, x real constants. As for the previous solution, b25 → 0, b45 → 0 are allowed

in our solution, but b24 → 0 is not for an intermediate SU(2) structure. With the same

arguments as before, it can actually be allowed in the SU(3) limit (see (4.23)). Using these

behaviours of our parameters, we get:

Ω3 SU(3) =(b12+ic12) ((f5+ig5) e
5+(f6+ig6) e

6)∧ (e1−τe3)∧
(

e2−ατe4− 1

x
(y2+y1ατ)e

5

)

,

(4.47)

with τ = b23+ic23
b12+ic12

(clearly of the same form as the static SU(2) limit of the third solution).

Let us now consider the fluxes. We get H = 0 and then F1 = 0. In the simpler case

chosen for the parameters (4.24), we get a non-trivial F3 in the SU(3) limit:

F3 SU(3) =
e−iθ(−c223 + x2) |g6|

gsx|f5|
(e2 ∧ e3 ∧ e6 + α e1 ∧ e4 ∧ e6) . (4.48)

With this simple choice for the parameters, we have y1 = y2 = 0, so the solution obtained

in the limit is compatible with the two sources appearing when computing the BI.

Let us now consider the static SU(2) limit of the second solution, which should corre-

spond to “Model 2” in [1] (taking α = 1). Our z is clearly the same as theirs. By imposing

that Re(Ω2)⊥ goes to zero (∼ k||) and comparing its limit with their js, we get these be-

haviours for our parameters: b12 ∼ −xk||, b23 ∼ −yk|| where x and y are real constants. It

was forbidden in our solution to put these parameters to zero but when one looks closely

at the volume form (see for instance (4.23)), one sees it can be allowed in the static SU(2)

limit. The solution given in [1] is the following:

Ω2s = (e1+i(−τ2
2 e

2+τ1
2 e

4+τ1
3 e

5)) ∧
(

e3+i

(

τ2
2 e

4+τ2
3 e

5+

(

2
bs
t2s
τ2
2 +

t1s

t2s
τ1
2

)

e2
))

, (4.49)

with all parameters real, and t2s = 1+b2s
t1s

. When taking the limit on our forms, we get

the same result, with a global normalization factor difference: our Ω2 static SU(2) and our

j static SU(2) are obtained by multiplying theirs by λ = (xc23−yc12)2

b24(c212+x2)
. Apart from this nor-
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malization, we manage to recover their solution with:19

τ2
2 = −c23

λ
, τ1

2 = −2xyc23+c12c
2
23−y2c12

(c212 + x2)λ
, (4.50)

τ1
3 =

−c23b45(c212+x2)−2xyb25c23+(y2−c223)b25c12
b24(c

2
12 + x2)λ

, τ2
3 = −b45c12+b25c23

b24λ
, (4.51)

t1s =
c212 + x2

xc23 − yc12
, bs = −xy + c12c23

xc23 − yc12
. (4.52)

Note that this λ is a part of the volume obtained in the limit (see (4.23)), hence it is

well-defined and cannot be zero. Note also that we recover both their js and their Ω2s with

a factor λ difference, so that the normalization condition (2.12) stays correct for us and

for them. As this normalization condition implies λ2 we have the choice on the sign of the

factor in j (we took +λ), which is related to the sign of b24. It is then related to the sign

of the ti appearing.

Let us now look at the fluxes. We have only an F3 as they do. In the simple case

chosen for our parameters (4.24), by taking the limit of our d(F3), we exactly get theirs,

multiplied by λ as it should be.

4.3.3 Limits of the third solution

We already mentioned that this solution was the T-dual of the second one. In [1], they also

mention this point for the limit structures: the SU(3) limit of our solution (with α = 1)

consists of their “Model 3”, and they mention that it is the T-dual to their “Model 2”,

which is the static SU(2) limit of our second solution, as just discussed. So by this T-

duality argument, this SU(3) limit of our solution must match their “Model 3”, and we

will not consider further the SU(3) limit. Note for instance we get the “same” (T-dual)

limit behaviours of our parameters: b12 ∼ xk⊥, b23 ∼ yk⊥ where x and y are real constants.

Let us now consider the static SU(2) limit of our third solution, which corresponds to

the “Model 4” in [1]. With the same reasoning, it is probably the T-dual to the SU(3) limit

of our second solution, that did not match to any solution found in [1]. We first note that

our z matches theirs, modulo a global i factor. This difference is due to a different phase

convention for the O6. Let us look at the other forms. As usual, considering the limit of

Re(Ω2)|| and comparing it to js imposes b25 ∼ y1k||, b45 ∼ y2k||, b24 ∼ xk|| with y1, y2, x

real constants. Once again, b24 going to zero can be allowed in this limit (see (4.35)). Using

these behaviours of our parameters, we get the solution of [1] by taking the limit on our

forms. In [1] they have:

Ω2s = (τ1
1 e

1 + τ1
2 e

3) ∧
(

τ2
1 e

2 +
τ1
2

τ1
1

τ2
1 e

4 + τ2
3 e

5

)

, (4.53)

19Note that the complicated expressions for the parameters are related to the freedom left in choosing

different expressions for the zi (we did not take the same as them), as mentioned in subsection 4.1, and the

ti are different for the same reason.
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with complex parameters, and we match it and js with:

τ1
1 =

b12 + ic12
τ2
1

, τ1
2 = −b23 + ic23

τ2
1

, τ2
3 = −τ

2
1

x

(

y2 + y1
(b23 + ic23)

(b12 + ic12)

)

, (4.54)

t1s =
(c23b12 − b23c12)|τ2

1 |2
(b212 + c212)x

=
1

t2s
, (4.55)

where τ2
1 is not fixed. Note t1st2s = 1 is here the normalization condition (2.12).

Let us now look at the fluxes. There are slight differences, due toH and z. As explained

previously, we do not get any H, while they do: this is an artefact of our procedure. Note

nevertheless that their H is more constrained than it appears to be in [1], once one imposes

it to be real. In our simple choice of parameters (4.36), by taking the limit on our d(F2), we

get exactly theirs, modulo the factor coming from z (related to the difference between our

z and theirs), and the following map we have to impose: |τ2
1 |4 = c223. This last condition

can seem surprising, but this difference is probably related to the absence of H in our limit.

Besides, note that in this simplified choice, we get y1 = y2 = τ2
3 = 0, hence the solution

obtained is clearly compatible with the sources appearing.

4.4 Some other interesting solutions?

In [1] they give the list of all the interesting nil/solvmanifolds and several information about

each. Then they checked for each of these manifolds whether there were some SU(3) or

static SU(2) solutions. They only found a few, and even less which were “new” (not T-dual

to a warped T 6 with an O3). One can ask if we could do the same study for intermediate

SU(2) structures. It would be a tedious job, so let us first make a few remarks. We showed

that the intermediate SU(2) solutions we already found gave back the solutions found in [1]

as limit solutions. But these were in [1] the only “new” solutions. So if there is any other

intermediate SU(2) solution on one of the manifolds, there can only be two cases: either

this solution has not any well defined limit, or it has but then the limit solution is not

“new”. As an example of the first case, we mention that there might be (to be verified)

an intermediate SU(2) solution on n 5.2 with an orientifold along 56 which does not seem

to have any well defined limit solution, because this set of manifold/orientifold does not

appear in the list of solutions of [1]. As an example of the second case, let us mention

that in [2] they find an intermediate SU(2) (not “new”) solution on n4.4 and n4.6 of which

some limit solution was found in [1] (and it was T-dual to a warped T 6). These remarks

point out that to find quickly any other “new” intermediate SU(2) solution, we cannot use

anymore the same intuition as before: trying to find some on the manifolds where “new”

SU(3) or static SU(2) solutions were found in [1]. We have to use other ideas.

To find a “new” intermediate SU(2) solution, we will restrict our search to the specific

case of solutions with several non completely overlapping orientifolds (in fact there cannot

be more than two as we will see). The idea which leads us to do so is that it might be

difficult to start with several non-overlapping sources, and get back by T-dualities a single

O3. Furthermore, we choose the two non-overlapping sources to be orientifolds to use their

projection properties: then, one can give some arguments which allow to discard some of

the manifolds as candidates for intermediate SU(2) solutions. These arguments also help
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to understand why a second source was appearing in our solutions, while we were only

imposing one. These (technical) arguments are given in appendix D. Starting with the

whole list of possible manifolds and orientifolds, using these arguments (including symme-

tries of the algebra) we end up with the following restricted set of possible configurations

of manifolds/O-planes (with couples of orientifolds between brackets):

IIB (and O5 sources) :

n3.3(45, 16), n3.6(25, 46), n3.9(25, 46), n3.13(45, 26)

n3.14(45, 26), n4.1(26, 35), n4.2(26, 35), n4.5(35, 26), n4.6(35, 26)

s2.2(14, 23), s2.4(14, 25), s2.5(13, 24), s2.6(14, 23)

s3.1(14, 25)(15, 24), s3.3(13, 24), s4.1(14, 25) , (4.56)

IIA (and O6 sources) :

n3.9(235, 346), n3.10(136, 235), n3.11(136, 235), n3.15(235, 346), n3.16(136, 235)

n4.2(236, 345), n4.3(146, 345), n4.4(146, 345), n4.6(246, 345), n4.7(135, 146)(135, 236)

s2.2(135, 245), s2.5(136, 246), s2.6(146, 236), s3.2(146, 256)

s3.3(136, 246), s3.4(145, 246), s4.1(145, 246) . (4.57)

The result is that we do not find any intermediate SU(2) solution with two non com-

pletely overlapping orientifolds on any of them20 for IIB, apart from the previously found

solutions: we tried the following configurations (manifold with the tried O-plane in brack-

ets) without success:

n3.3(45), n3.6(46), n3.9(46), n3.13(45), n4.1(26), n4.2(26), n4.5(35), n4.6(35)

s2.2(14), s2.4(14), s2.6(14), s3.1(14)(15), s3.3(13), s4.1(14) . (4.58)

For IIA, the work still has to be done.

5. Conclusion

In this paper, we have looked for “new” supersymmetric four-dimensional Minkowski flux

vacua of type II string theory, with intermediate SU(2) structure. They are “new” in

the sense they are not T-dual to a T 6 with an O3. We found three of them, in the

large volume limit with smeared sources and constant parameters. Two of them are T-

duals among themselves. To find these vacua, we introduced a new SU(2) structure, that

transforms simply under the orientifold projection, and which actually corresponds to the

SU(2) structure appearing with the dielectric pure spinors. Using these variables, we

rewrote the projection conditions given in [2] in a more tractable way, and at the same

time, the SUSY conditions became much simpler to solve. On the solutions found, we took

the limit to the SU(3) or the static SU(2) cases, and recovered the solutions of [1], hence

getting some intuition on what a dynamical SU(3) × SU(3) structure could look like.

20We notice that there might be a problem with the algebra of s2.3 given in [1], because it is supposed

to have only two zeros according to its name, and it actually has three zeros. So we did not try anything

on it.
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Some points remain to be studied. One interesting point is the number N of four-

dimensional SUSY preserved by the vacuum. Since these manifolds are parallelizable, the

effective action is a priori maximally supersymmetric. Part of the supersymmetry can be

broken by the presence of sources. Then, the vacuum can only preserve a fraction N of

it. In [1] and [2], N was given in simple cases. Generically, looking at (2.8), one has to

count the number of different pairs of internal spinors which are solutions to the SUSY

conditions, and give the same vacuum. In other words, one has to count the number of

different pairs of pure spinors which are solutions, and give the same metric and fluxes.

It is the same as identifying the freedom left in a generic solution, which is for general

solutions not an easy thing to do. That is why we did not discuss it in this paper, but a

careful study could be interesting.

Another point is applying these techniques to study the possibility of AdS vacua with

intermediate SU(2) structures. Actually, after the first appearance of this paper, it was

shown in [22] that such solutions cannot exist.

A last point to study is the appearance of a second source in our solutions, while

we were only imposing one. If we knew in advance that a second source was going to be

present, this could have simplified the search in the case of an O-plane because of the

other projection conditions to impose. In subsection 4.4, we discussed why the second

O-plane could appear at the same time, but it is not clear whether its presence is necessary.

Finding these “new” solutions has several interests. It provides new examples of vacua

on GCY, not related to the usual and widely studied T 6. It then gives some insight on new

corners of the landscape, providing for instance new set-ups to compactify and find low

energy effective actions. The compactification on these new manifolds has already been

studied, and some arguments to find the effective actions have been given [23 – 26]. Note

that finding first the four-dimensional effective action and then its vacuum has been proved

to be equivalent to find directly the ten-dimensional vacuum on the product space-time

the way we did here [25, 26].

Another possible interest is the link with non-geometrical backgrounds, as done in [1].

In particular, it was mentioned in [1] a possible link due to an asymmetric orbifold [27, 28].

These new solutions might provide new ingredients to understand it.

Finally, the formalism developed here could be interesting for dynamical solutions.

Indeed, a dynamical solution would generically have the form of an intermediate SU(2)

structure solution everywhere on the internal manifold, except at some points where it

becomes an SU(3) structure (or a static SU(2) structure). In this paper we showed that

the dielectric pure spinors and the associated SU(2) structure were the good variables

in which to find intermediate SU(2) structure solutions, so they are probably the best

variables to find dynamical solutions. But so far, despite the simplicity of the equations,

our efforts in this direction have not met success.

An open side question concerns the search of a better discrimination of the manifolds

on which to find a supersymmetric flux vacuum. Indeed, in [1], they looked among a long

list of GCY and only found a few on which there was some vacuum. In the same way, in
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this paper, we tried to find vacua on some other manifolds without success. This seems

to indicate the existence of some other refined criteria for which manifold to use, that we

are missing at the moment. The mathematical specification of the manifolds is known: as

explained, the manifolds should be a twisted GCY admitting an SU(3)× SU(3) structure,

and being compatible with at least one O-plane. The existence of the SU(3) × SU(3)

structure, and whether this structure is compatible with the orientifold projection, might

be for instance criteria that haven’t been implemented before beginning the search for vacua

in [1] and in this paper. These could lead to a restricted set of manifolds/orientifolds.
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A. Conventions and derivation of background formulas

A.1 Some conventions of differential forms

In this appendix we give our conventions on (internal) gamma matrices, differential forms,

some useful formulas about contractions, and conventions for the (six-dimensional) Hodge

star.

We choose hermitian γ matrices (they are all purely imaginary and antisymmetric):

γi† = γi.

Here are some identities used (see [29] for more):

{γm, γn} = 2gmn [γm, γn] = 2γmn

{γmn, γp} = 2γmnp [γmn, γp] = −4δp[mγn]

{γmnpq, γr} = 2γmnpqr [γmnpq, γr] = −8δr[mγnpq] . (A.1)

We take as a convention for a p-form A:

γµ1...µp ↔ dxµ1 ∧ . . . ∧ dxµp A =
1

p!
Aµ1...µpγ

µ1...µp . (A.2)

With some abuse in the notation, when we write the conjugate of a form expressed

with real indices (i.e. on a real basis), we mean the conjugate of its components, hence for

the one-form z appearing in the main part, we have (µ being a real index):

z = zµγ
µ . (A.3)

For a p-tensor A, we define the antisymmetrization (with the p! possible terms on the

right-hand side) as:

A[µ1...µp] =
1

p!
(Aµ1µ2µ3...µp−Aµ2µ1µ3...µp +Aµ2µ3µ1...µp + · · ·+Aµ3µ4µ1µ2µ5...µp + · · · ) . (A.4)
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For a p-form A and q-form B, we have the convention:

1

(p+ q)!
(A ∧B)µ1...µp+q

=
1

p!q!
A[µ1...µp

Bµp+1...µp+q ] . (A.5)

For a p-form A and a 1-form b = biγ
i, we define the contraction:

bxA =
1

p!
bνAµ1...µp p δ

[µ1
ν γµ2...µp] =

1

(p− 1)!
bµ1Aµ1...µpγ

µ2...µp . (A.6)

For generic 1-form x, p-form A and q-form B, one has:

xx(A ∧B) = (xxA) ∧B + (−1)p A ∧ (xxB) . (A.7)

We now give the conventions for the Hodge star ∗, with a given metric g. We introduce

the totally antisymmetric tensor ǫ by ǫµ1...µm = +1/−1 for (µ1 . . . µm) being any even/odd

permutation of (1 . . . m), and 0 otherwise. Then, the convention used for the Hodge star

is:21

∗(dxµ1∧. . .∧dxµk)=

√

|g|
(n−k)!(−1)(n−k)k ǫµ1...µk µk+1...µn gµk+1νk+1

. . . gµnνn dx
νk+1∧. . .∧dxνn ,

(A.8)

with n the dimension of the space, |g| the determinant of the metric. In the eigenvector

basis (v1, . . . , vn), with diagonalized metric D, we get for a k-form:

∗(vµ1 ∧ . . . ∧ vµk) = (−1)(n−k)k ǫµ1...µn
√

|g|
Dµk+1µk+1

. . . Dµnµnv
µk+1 ∧ . . . ∧ vµn , (A.9)

without any summation on µk+1, . . . , µn, as we took off the (n− k)!, i.e. these indices are

fixed; the ǫµ1...µn is then only there for a sign. Note for a p-form Ap, one has:

∗ ∗Ap = (−1)(n−p)p Ap = (−1)(n−1)p Ap . (A.10)

A.2 SU(2) structure conditions

In this appendix we derive in a specific way the SU(2) structure conditions given in sub-

section 2.2. We start by considering a globally defined spinor η+: this gives an SU(3)

structure which has the properties (2.10). Let us now assume there is some holomorphic

globally defined one-form z, for which we recall ||z||2 = zxz = zxz = zµzµ = 2. One can

then always define two-forms from it:

j = J − i

2
z ∧ z Ω2 =

1

2
zxΩ3 . (A.11)

Note that j is clearly real. We are going to show that these define an SU(2) structure

(the one naturally embedded in the SU(3)) since they satisfy the conditions (2.12), (2.13),

and (2.14).

21We take the same “awkward sign convention” as in [1], in order to use the same pure spinors SUSY

equations and the same calibration of the sources.
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Holomorphicity is defined with respect to the almost complex structure (see footnote 2).

Then, one can always have an hermitian metric (its non-zero components have one index

holomorphic and the other anthropomorphic). Using this metric and some holomorphicity

arguments in six dimensions, we first get that zxΩ3 = 0, zxz = zxz = 0. Furthermore, we

get that Ω2 is holomorphic, and deduce the following structure conditions:

Ω2 ∧ Ω2 = 0 , (A.12)

zxΩ2 = 0, zxΩ2 = 0 . (A.13)

Using the same arguments, we get that z ∧ Ω3 = 0, and using (A.7), we have: 0 =

zx(z ∧ Ω3) = 2Ω3 − z ∧ (zxΩ3), hence

Ω3 = z ∧ Ω2 . (A.14)

Let us now recover the structure conditions involving j. We get using (A.7):

zx(z∧z
2 ) = −z, zx(z∧z

2 ) = z. We have (using our almost complex structure and real

indices) zxJ = iz, because

(zxJ)ν = zµJµν = −Jνµz
µ = −J µ

ν zµ = −(−i)zν = izν . (A.15)

So we deduce from the definition of j the following structure conditions:

zxj = 0, zxj = 0 . (A.16)

Using J ∧ Ω3 = 0 and (A.14), we deduce z ∧ j ∧Ω2 = 0, and using (A.7), we then get:

j ∧Ω2 = 0 . (A.17)

To recover the remaining structure condition (2.12), we express the equality 4
3J

3 =

iΩ3∧Ω3 in terms of z, j and Ω2, and get 4
3(j+ i

2z∧ z)3 = iz∧ z∧Ω2∧Ω2. Then, using the

previously derived properties, contracting last formula with z and then contracting with z,

we finally get:

2 j2 = Ω2 ∧ Ω2 . (A.18)

Going back to 4
3J

3 = iΩ3 ∧ Ω3, one deduces with (A.18):

j3 = 0 . (A.19)

A.3 Details on the compatibility conditions

In subsection 2.3, we explained that we needed a pair of compatible pure spinors. We

mentioned that the compatibility conditions were actually implied by a set of SU(2) struc-

ture conditions seen in subsection 2.2. We are going to prove this implication here. The

SU(2) structure conditions involved are (A.12), (A.17), (A.18), and (A.19). We will use

the formulas (2.26) for the pure spinors, which are valid for any structure (intermediate

or static SU(2), SU(3)), hence this result is valid for any structure. We give the following

useful formula for any p-form Ap and q-form Bq:

λ(Ap ∧Bq) = (−1)pqλ(Ap) ∧ λ(Bq) , (A.20)
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and we recall the compatibility conditions given in subsection 2.3 (with the Φi defined

in (2.38)):

〈

Φ1,Φ1

〉

=
〈

Φ2,Φ2

〉

6= 0 , (A.21)

〈Φ1,X · Φ2〉 =
〈

Φ1,X · Φ2

〉

= 0, ∀ X = (x, y) ∈ T ⊕ T ∗ . (A.22)

In the following, we will use the Φi defined in (2.38) for IIA, but note these conditions are ac-

tually independent of the theory, since they are only involving a generic pair of pure spinors.

Using (2.26) for the pure spinors, the first compatibility condition gives

z ∧ z ∧
(

2k2
⊥j

2 + k2
||Ω2 ∧Ω2 − 2k||k⊥j ∧ Re(Ω2)

)

6= 0 , (A.23)

k2
||

4

3
ij3+ik||k⊥j

2 ∧ Re(Ω2)=4
z ∧ z
||z||2 ∧

(

j2(k2
||−k2

⊥)

+
1

2
Ω2 ∧Ω2(k

2
⊥−k2

||)+2j ∧ Re(Ω2)k||k⊥

)

.(A.24)

One can see that imposing (A.17), (A.18) and (A.19), (A.24) is automatically satisfied.

Only (A.23) remains to be satisfied; it corresponds to the volume form being non-zero.

Let us now focus on the second compatibility condition. Since this condition is valid for

any X, it is sufficient to study it in the two different cases where X = (x, 0) and X = (0, y).

Then let us first look at X = (0, y) and the condition 〈Φ1,X · Φ2〉 = 0. One gets:

y ∧ z ∧Ω2 ∧ (k||k⊥Ω2 + (k2
|| − k2

⊥)j) = 0 . (A.25)

As (A.25) is valid for any y, we get:

z ∧ Ω2 ∧ (k||k⊥Ω2 + (k2
|| − k2

⊥)j) = 0 . (A.26)

If one imposes (A.12) and (A.17), (A.25) is automatically satisfied.

Let us now considerX = (x, 0) and still 〈Φ1,X · Φ2〉 = 0. Using (A.7) and the following

useful formula valid ∀x ∈ T, ∀n ǫ N
∗

xxjn = n j(n−1) ∧ (xxj) , (A.27)

one gets the following top form in terms of xxz, xxj, and xxΩ2:

(xxz)

(

i

2
Ω2 ∧ j2 +

z ∧ z
2

Ω2 ∧ (−k||k⊥Ω2 + j(k2
⊥ − k2

||))

)

−z ∧
(

ik2
⊥Ω2 ∧ j ∧ (xxj) +

k2
||

2
j2 ∧ (xxΩ2)

)

. (A.28)

Apart from the term in j2 ∧ (xxΩ2), the previous expression is obviously zero when one

imposes (A.12) and (A.17). Using (A.7) and (A.27), one has

xx(j2 ∧ Ω2) = 2 j ∧ xx(j) ∧ Ω2 + j2 ∧ (xxΩ2) . (A.29)
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Hence the term in j2 ∧ (xxΩ2) is also zero when using (A.17), so the whole expression

vanishes with (A.12) and (A.17). Thus, 〈Φ1,X · Φ2〉 = 0 is automatically satisfied for any

X when (A.12) and (A.17) are imposed.

One can play the same game with the condition
〈

Φ1,X · Φ2

〉

= 0. For X = (0, y), one

gets:

y ∧ z ∧
(

k||k⊥(Ω2 ∧Ω2 − 2 j2) + j ∧ (k2
||Ω2 − k2

⊥Ω2)
)

= 0 , (A.30)

which is obviously satisfied by imposing (A.17) and (A.18). For the X = (x, 0) case, one

gets:

(xxz)

(

− 4i

3
k||k⊥j

3+
i

2
j2 ∧ (k2

||Ω2−k2
⊥Ω2)−

z ∧ z
2
∧ (k||k⊥(Ω2 ∧Ω2−2j2)

+j∧(k2
||Ω2−k2

⊥Ω2))

)

+z∧
(

ik⊥(xxj)∧j∧(2k||j+k⊥Ω2)−
k2
||

2
j2∧(xxΩ2)

)

=0.(A.31)

Using the same kinds of tricks as before ((A.19) gives j2 ∧ (xxj) = 0), we get

that (A.17), (A.18) and (A.19) imply that the whole expression is zero. Thus,
〈

Φ1,X · Φ2

〉

= 0 is automatically satisfied for any X when (A.17), (A.18) and (A.19) are

imposed.

We add the following point referring to subsection B.1: (A.24) can be rewritten in

terms of the projection basis variables. It gives an equation which can be decomposed in

the two following equations after projection:

Re(Ω2)
3
||

γ3

6
(3 + r(3 + 2k2

||))− Re(Ω2)
2
⊥ ∧ Re(Ω2)||

1

2γ
(1− r(3 + 2k2

||))

+
8

||z||2
1 + r

2
Re(z) ∧ Im(z) ∧

(

Re(Ω2)
2
||

1− cos(2φ)
− Re(Ω2)

2
⊥

1 + cos(2φ)

)

= 0 , (A.32)

Re(Ω2)
3
⊥

1

6γ3
(3− r(3 + 2k2

||))− Re(Ω2)
2
|| ∧ Re(Ω2)⊥

γ

2
(1 + r(3 + 2k2

||))

+
8

||z||2
1− r

2
Re(z) ∧ Im(z) ∧

(

Re(Ω2)
2
||

1− cos(2φ)
− Re(Ω2)

2
⊥

1 + cos(2φ)

)

= 0 . (A.33)

Actually, one can show that these two equations are automatically satisfied using (B.4)

and (B.5) which are a rewriting of some SU(2) structure conditions, because each of the

three terms is zero. So we recover the fact that (A.24) is automatically satisfied after

imposing the SU(2) structure conditions.

B. Going to the projection basis

In subsection 3.3, we explained that the good variables to use were the projection basis:

Re(z), Im(z), Im(Ω2), Re(Ω2)||, Re(Ω2)⊥, (j||, j⊥) , (B.1)

where j||, j⊥ can eliminated using the projection conditions (3.15). So in this appendix,

we rewrite the different equations to be solved in terms of these variables.
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B.1 SU(2) structure conditions

In this appendix we rewrite the SU(2) structure conditions implying the compatibility

conditions (see appendix A.3), namely (A.12), (A.17), (A.18) and (A.19). To do so we also

use the projection conditions (3.15). The SU(2) structure conditions (A.12) and (A.17) are

equivalent to (for both theories):

Im(Ω2) ∧ Re(Ω2)|| = 0 , (B.2)

Im(Ω2) ∧ Re(Ω2)⊥ = 0 , (B.3)

Re(Ω2)|| ∧ Re(Ω2)⊥ = 0 , (B.4)

Re(Ω2)
2
|| =

1

γ2
Re(Ω2)

2
⊥ , (B.5)

Re(Ω2)
2
|| + Re(Ω2)

2
⊥ = Im(Ω2)

2 . (B.6)

We do not get any new condition from (A.18) and (A.19), which can be understood the fol-

lowing way: as discussed in subsection 3.3, z, Im(Ω2), Re(Ω2)||, Re(Ω2)⊥ defines, modulo

a rescaling, a new SU(2) structure (obtained by a rotation from the previous one). And so

it is natural [17] to have the five previous “wedge conditions”, and only them.

We recall that this last set of conditions, together with the projection conditions, is

then enough to get all the compatibility conditions except from (A.23). For instance, in

appendix A.3, we rewrote the compatibility condition (A.24) in terms of the projection

basis variables and show that it was automatically satisfied using (B.4) and (B.5). Using

the last relations and the projection basis, we can also rewrite (A.23):

Re(z) ∧ Im(z) ∧
(

Im(Ω2)
2 +

1

k2
||

(
1− r

2
Re(Ω2)

2
|| +

1 + r

2
Re(Ω2)

2
⊥)

)

6= 0 ,

⇔ Re(z) ∧ Im(z) ∧ Re(Ω2)
2
|| 6= 0 . (B.7)

B.2 SUSY conditions

We derive in this appendix the SUSY conditions, starting from (2.35), (2.36), and (2.37)

and a general expressions for the pure spinors, and then explaining the various steps leading

to the equations given in subsection 3.4.

B.2.1 SUSY conditions derivation

We first use the following general expressions for the pure spinors:

Φ+ =
ab

8
N2e

1
||z||2

z∧z
(k||e

−ij − ik⊥Ω2) ,

Φ− = −ab
8

√
2

||z||N
2z ∧ (k⊥e

−ij + ik||Ω2) , (B.8)

with a, b, ||z||, N = ||η+|| constant and non-zero, and k||, k⊥ constant, and without any

further fixing. For IIA, we just choose ab real (as it is the case when fixing further) and

for IIB, we choose ab real, as it is the case for the O5 projection. We recall that the fluxes
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are real. We then get the following equations, where (2.35) has been decomposed under its

real and imaginary parts:

IIA : F6 = 0

d(e2A−φ)k|| = 0

d(eA−φRe(z))k⊥ = 0

d(e3A−φIm(z))k⊥ = − e4A||z||√
2abN2

∗ F4

d(e2A−φIm(Ω2))k⊥ = e2A−φk||H

d

(

e2A−φ

(

−k||j − k⊥Re(Ω2) + k||
z ∧ z
i||z||2

))

= 0

d(eA−φ(−k||Re(z)Im(Ω2)− Im(z)(−k⊥j + k||Re(Ω2)))) = eA−φk⊥HRe(z)

d(e3A−φ(−k||Im(z)Im(Ω2)+Re(z)(−k⊥j+k||Re(Ω2))))

−e3A−φk⊥HIm(z)=
e4A||z||√
2abN2

∗F2

d

(

e2A−φ

(

−1

2
k||j

2 − z ∧ z
i||z||2 (−k||j − k⊥Re(Ω2))

))

= e2A−φk⊥H ∧ Im(Ω2)

d

(

e2A−φ z ∧ z
i||z||2 ∧ Im(Ω2)

)

k⊥ = e2A−φH

(

−k||j − k⊥Re(Ω2) + k||
z ∧ z
i||z||2

)

1

2
k⊥Re(z) ∧ d(j2) = H(−k||Re(z)Im(Ω2)− Im(z)(−k⊥j + k||Re(Ω2)))

d

(

e3A−φ

(

−1

2
j2∧Im(z)

))

k⊥−e3A−φH∧(−k||Im(z)Im(Ω2)

+Re(z)(−k⊥j+k||Re(Ω2))) = − e4A||z||√
2abN2

∗ F0 , (B.9)

IIB : F5 = 0

d(eA−φ)k|| = 0

d(e2A−φRe(z))k⊥ = 0

d(e2A−φIm(z))k⊥ = 0

d(eA−φIm(Ω2))k⊥ = eA−φk||H

d

(

e3A−φ

(

−k||j − k⊥Re(Ω2) + k||
z ∧ z
i||z||2

))

= − e4A

abN2
∗ F3

d(e2A−φ(−k||Re(z)∧Im(Ω2)− Im(z)∧(−k⊥j+k||Re(Ω2))))=e
2A−φk⊥H∧Re(z)

d(e2A−φ(Re(z) ∧ (−k⊥j+k||Re(Ω2))−k||Im(z)∧Im(Ω2)))=e
2A−φk⊥H∧Im(z)

d

(

eA−φ

(

−1

2
k||j

2 +
z ∧ z
i||z||2 (k||j + k⊥Re(Ω2))

))

= eA−φk⊥H ∧ Im(Ω2)

d

(

e3A−φk⊥
z ∧ z
i||z||2 ∧Im(Ω2)

)

−e3A−φH∧
(

−k||j−k⊥Re(Ω2)+k||
z ∧ z
i||z||2

)

=
e4A

abN2
∗F1

1

2
k⊥Re(z) ∧ d(j2) = H ∧ (−k||Re(z) ∧ Im(Ω2)− Im(z) ∧ (−k⊥j + k||Re(Ω2)))

1

2
k⊥Im(z) ∧ d(j2) = H ∧ (Re(z) ∧ (−k⊥j + k||Re(Ω2))− k||Im(z) ∧ Im(Ω2)) .

(B.10)
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Then, one goes further by fixing as usual the parameters (a = b and b = aeiθ, N =

||η+|| = 1 and ||z||2 = 2), going to the large volume limit (see subsection 3.4), and assuming

k||, k⊥ to be non-zero. The next step is to introduce the projection basis variables which

are the good variables to use here (see subsection 3.3). Actually, one can notice that the

corresponding linear combinations (see (3.17)) already appear in the previous equations,

indicating the possible simplifications. One way to get them is to apply σ on the equations

and then project on the parallel and orthogonal parts.22 This is another projection after

the projection on real and imaginary parts and it gives much simpler equations. Note

we have in each case σ(H) = −H. Using furthermore the projection conditions (3.15),

and (3.17), the SUSY conditions are simplified to:

IIA : d(Im(z))k⊥ = −gs ∗ F4

d(Im(Ω2))k⊥ = k||H

− k||d(Im(z)) ∧ Im(Ω2) +
1

k||
d(Re(Ω2)||) ∧ Re(z) − 1

k⊥
H ∧ Im(z) = gs ∗ F2

d

(

−1

2
j2∧Im(z)

)

k⊥−H∧
(

−k||Im(z)∧Im(Ω2)+
1

k||
Re(z)∧Re(Ω2)||

)

=−gs∗F0

d(Re(z)) = 0

d(Re(Ω2)⊥) = k||k⊥Re(z) ∧ d(Im(z))

H ∧ Re(z) = −k⊥
k||
d(Im(z) ∧ Re(Ω2)||)

d(j|| ∧ j⊥) = 0

− 1

2
k||d(j

2
|| + j2⊥) +

1

k⊥
Re(Ω2)⊥ ∧Re(z) ∧ d(Im(z)) = k⊥H ∧ Im(Ω2)

d(Im(Ω2) ∧ Re(Ω2)⊥) = 0

H ∧ Re(z) ∧ Im(Ω2) = −H ∧ Im(z) ∧ Re(Ω2)|| , (B.11)

IIB : d(Im(Ω2))k⊥ = k||H

d(Re(Ω2)||) = k⊥e
iθgs ∗ F3

H ∧ Re(Ω2)|| = k⊥e
iθgs ∗ F1

d(Re(z)) = 0

d(Im(z)) = 0

Re(z) ∧H = −k⊥
k||

Im(z) ∧ d(Re(Ω2)⊥)

22To do so, one has to know that σ “commutes” with Re() and Im() (obvious), and more importantly, it

commutes with d(), the exterior derivative, since the algebra of the manifold we consider has to be invariant

under the projection (this is the same condition as the compatibility of the sources on this manifold, we

will explain this in greater details with our solutions).
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Im(z) ∧H =
k⊥
k||

Re(z) ∧ d(Re(Ω2)⊥)

d(j|| ∧ j⊥) = 0

− 1

2
k||d(j

2
|| + j2⊥)− 1

k⊥
Re(z) ∧ Im(z) ∧ d(Re(Ω2)||) = k⊥H ∧ Im(Ω2)

− Re(z) ∧H ∧ Im(Ω2) = Im(z) ∧H ∧ Re(Ω2)⊥

Im(z) ∧H ∧ Im(Ω2) = Re(z) ∧H ∧Re(Ω2)⊥ . (B.12)

The final steps to get the SUSY conditions (3.27) and (3.28) are the following. One can

first use the property derived in the next subsection, namely that in IIA/IIB there cannot

be any 6-form which is positive/negative under σ. This gives the automatic annihilation

of the last equation of IIA and the two last equations of IIB, and the simplification of the

definition of F0 in IIA. Second, one can use the SU(2) structure conditions, namely (B.2)

to (B.6), to get some more simplifications.

B.2.2 More use of the projection basis

In IIA/IIB we introduce on a six-dimensional manifold an O6/O5 plane. The 1-form basis

used is (e1, . . . , e6) and we choose the three/two internal dimensions of the O6/O5 along

directions labeled ei+. The other three/four directions are labeled ei−. The ± are used in

reference to the action of σ on these forms: σ(ei±) = ±ei±. We then deduce that any i-form

Oi can be decomposed naturally as Oi|| +Oi⊥, which can only be written this way:

O1|| =
∑

i

ci+ ei+ ,

O1⊥ =
∑

i

ci− ei− ,

O2|| =
∑

i,j

cij||+ ei+ ∧ ej+ + cij||− ei− ∧ ej− ,

O2⊥ =
∑

i,j

cij⊥ ei+ ∧ ej− ,

O3⊥ =
∑

i,j,k

cijk⊥+ ei+ ∧ ej+ ∧ ek− + cijk⊥− ei− ∧ ej− ∧ ek− ,

. . . (B.13)

We can now show very easily that some conditions are automatically satisfied, or

simplified, because we only have a limited number of ei± in each theory. Especially, one can

say that in IIA/IIB there cannot be any 6-form which is positive/negative under σ, due to

the number of ei±, and so we can get the automatic annihilation of some conditions. It is

the case in the SUSY conditions given above.

C. Discussion of some normalization with calibrated smeared sources

In this appendix, we motivate the normalization condition (4.4). From the work done on

calibrations of supersymmetric sources [20, 2], we know that a calibrated source wrapping
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an internal k-dimensional cycle Σ (in a d-dimensional internal space M), taken in a con-

figuration without any flux pulled-back on it or world-volume flux F , should satisfy the

following condition:

Im(Φ2)|Σ =
|a|2
8

√

|det(P (G))| dσ1 ∧ . . . ∧ dσk , (C.1)

where σi are coordinates on Σ, |det(P (G))| is the absolute value of the determinant of

the pull-back on the source world-volume of the ten-dimensional metric G, and Im(Φ2) is

restricted to its components on Σ. With our ansatz (2.1) for G, we get:

Im(Φ2)|Σ =
|a|2
8
e4AVΣ , (C.2)

where VΣ is the volume form of Σ. Further, with our conventions and in the large volume

limit, we get:

e3A−φIm(Φ2)|Σ =
1

8gs
VΣ , (C.3)

where e3A−φ should be understood as taken in the large volume limit.

The literature on calibrations introduces a current jΣ, defined in our conventions as

(the Mukai pairing was defined in (2.31))

∫

M
〈jΣ, f〉 =

∫

Σ
f , (C.4)

for a given form f of Σ, and so one can introduce the one, jΣi
, associated to e3A−φIm(Φ2)|Σi

for a source i. This current is actually related to the source current appearing in the

right-hand side of the BI. Indeed, we can write (up to some factors that we won’t take

into account)

(d−H∧)F = jTotal =
∑

sources i

Qi jΣi
, (C.5)

Qi being considered as the RR charge. So jΣi
corresponds to the density current, and can

be written roughly as:

jΣi
≈ δd−k(Σ) ∗ VΣi

, (C.6)

i.e. as a δ function to localize the source in its transverse directions, times the volume

orthogonal to the cycle. Actually, the definition (C.4) shows that a sign like the one given

by λ(f) is entering the game, because a Mukai pairing is used instead of a simple wedge

product. Hence we choose23

jΣi
= δd−k(Σ) ∗ λ(VΣi

) . (C.7)

The smearing of the source corresponds to the idea that the source is not localized

anymore in the transverse directions, or in other words, one doesn’t see the δ function

23Note that we could multiply this expression for jΣi
by

R

Σi
VΣi

R

M
V

, a natural factor when considering (C.4),

which would make jΣi
metric independent. This is one more example of positive factors which could be

taken into account.
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anymore, and so in this case, we write:

(d−H∧)F =
∑

sources i

QiV
i, jΣi

= V i , (C.8)

and we should now have

V i = ∗λ(VΣi
) . (C.9)

Actually, one can show in our conventions that

〈∗λ(VΣi
), VΣi

〉 = V , (C.10)

(where V is the internal space volume form). Hence, using (C.3) and the last result, we get

to the following normalization condition in the large volume limit and for smeared sources:

〈

V i, e3A−φIm(Φ2)
〉

=
1

8gs
V . (C.11)

We conclude with two remarks. First, this normalization could be refined, to take into

account some forgotten factors like those appearing in the BI. But all these factors are

positive, so they are not changing the sign of the charges, which is what matters in the

end. Second, there are several ways to show that

∫

M6

〈

V i, e3A−φIm(Φ2)
〉

> 0 , (C.12)

either by (C.4), or by the derivation of the no-go theorem done this way in [1], hence the

sign given by λ(. . .) is indeed needed.

D. Solutions with several O-planes

In this appendix, we are going to explain the arguments that allow to reduce the list

of possible sets of manifolds/O-planes for an intermediate SU(2) solution with several

(non completely overlapping) orientifolds, as explained in subsection 4.4. Let us first

consider the case of a type IIB solution (with an O5-plane). Using the same notations as in

appendix B.2.2, we introduce the natural notation for the ei: ei±, defined by σ(ei±) = ±ei±.

For an O5-plane in a six-dimensional manifold, there are four ei− and two ei+. To have an

O5 source, it must first be compatible with the algebra of the manifold. The list given in [1]

indicate what are the possible compatible O-planes, so it must be part of it. Furthermore,

one should have a non-trivial F3 to see this source appear, and we recall that the BI for

that flux (d(F3)) gives the co-volume of this source.24 This co-volume is nothing but the

wedge product of the four ei−. So there must be in the algebra of the manifold an ek such

that d(ek) = ei− ∧ ej−. This is actually a non-trivial requirement: we have to look for

manifolds which have two O-planes being listed in the compatible O-planes, and satisfying

this co-volume requirement. For instance, the nilmanifold n4.4 has the following algebra:

24Note we consider here the simple case where there is no −H ∧ F1 term, so the reasoning might not be

the most general one. In IIA for F2, we will not have this restriction since −H ∧ F0 is an exact term.
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(0, 0, 0, 0, 12, 14 + 23). The O5 compatible are along 56, 13, and 24. 56 is the only one

satisfying the co-volume requirement, so there can be at most one O-plane on this manifold.

Note that solutions with an O-plane along 56 are actually found in [1] and [2]. Doing this

systematic check, some manifolds are excluded.

We can add other criteria on the O-planes. For a type IIB solution, we have σ(z) = −z.
So the O-planes must be orthogonal to it (the “z criteria”). The z contains at least two

distinct directions (otherwise z∧ z would be zero which is forbidden) so the O-planes must

be orthogonal to both. Furthermore, we have the SUSY condition d(z) = 0, hence the O-

planes must be at least orthogonal to two of the 0 directions of the algebra. This “z criteria”

allows to discard all the n 2.p nilmanifolds for instance, and also all the s 1.p solvmanifolds.

There is another important criteria. Let us use the following notation: z is at least

along e1− and e2−, there are two other − directions noted e3− and e4−, and the two + directions

are noted e1+ and e2+, with respect to the first O-plane. Each O-plane has to be orthogonal

to z, so we can use the same notation for the second one: z is at least along e1− and

e2− which are − directions for the second O-plane too. To have an intermediate SU(2)

structure solution, we must have a non-zero Re(Ω2)|| (see the conditions). As explained

in appendix B.2.2, it is clear that Re(Ω2)|| only has components on two-forms ei+ ∧ ej+ or

ei− ∧ ej− but not on mixed + and −. Because of the volume form condition given in (B.7),

and because z is along − directions, Re(Ω2)|| is in (B.7) the only form which can bring the

ei+, so the pair (e1+, e
2
+) has to be present in the decomposition of Re(Ω2)||. For the solution

to be compatible with both O-planes, Re(Ω2)|| must be “parallel” under both projections,

so it means that the pairs (e1+, e
2
+) and (ei−, e

j
−) of one O-plane must corresponds to such

pairs for the other O-plane, and not to mixed + and − pairs. More precisely, as we do not

want the O-planes to be completely overlapping, so not along the same two directions, we

deduce that the pair (e1+, e
2
+) for the first O-plane must be a (ek−, e

l
−) pair for the second

and vice-versa. But the two O-planes already share two − directions given by z: e1− and

e2−. So (e1+, e
2
+) of the first O-plane corresponds to the pair (e3−, e

4
−) of the second and vice-

versa. This just means the following “direction criteria”: the two O-planes have to be along

completely different directions, they cannot share one direction. These different directions

are orthogonal to the z directions, so not much possibility is left: in particular, z is then

“only” along two directions, and at most two non completely overlapping O5 are possible at

the same time in an intermediate SU(2) solution. This is exactly the case for our solutions:

for instance for the first solution, the O-planes are along 45 and 26, and z is along 1 and 3.

Applying carefully all these criteria, we find that the only remaining candidates are

(with the a priori allowed directions of the O-planes in brackets):

n3.3(45, 16), n3.6(25, 46), n3.9(25, 46), n3.13(45, 26)

n3.14(45, 26), n4.1(26, 35, 45), n4.2(26, 35, 45), n4.5 (35, 45, 26, 16), n4.6(35, 26)

s2.2(14, 23), s2.4(14, 15, 24, 25), s2.5(13, 14, 23, 24), s2.6 (14, 23)

s3.1(14, 15, 16, 24, 25, 26), s3.3(13, 14, 23, 24), s4.1 (14, 15, 16, 24, 25, 26) . (D.1)

Of course we find our solutions among them. Note that only some couples of the

O-planes indicated are possible. If one wants to find solutions to the list of condi-
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tions (3.15), (B.2), (B.3), (B.4), (B.5), (B.6), (B.7) and (3.28), one can use some symmetry

properties to avoid testing all the possibilities. For instance, n4.2 could a priori have a so-

lution with the couples of O-planes (26, 35) and (26, 45). But its algebra, (0, 0, 0, 0, 12, 15)

is clearly symmetric under the exchange of 3 and 4, so one can restrict the search to one

of the two couples. The same goes for n 4.1 for instance by doing the change of vari-

ables (e3 → e4, e4 → e3, e2 → −e2, e5 → −e5, e6 → −e6). In this way, the list of

manifolds/couples of O-planes to test is limited to:

n3.3(45, 16), n3.6(25, 46), n3.9(25, 46), n3.13(45, 26)

n3.14(45, 26), n4.1(26, 35), n4.2(26, 35), n4.5(35, 26), n4.6(35, 26)

s2.2(14, 23), s2.4(14, 25), s2.5(13, 24), s2.6(14, 23)

s3.1(14, 25)(15, 24), s3.3(13, 24), s4.1(14, 25). (D.2)

Let us now consider the type IIA case, with O6 as sources. This gives in six dimensions

three ei− and three ej+. One can actually use the same kind of criteria. The “co-volume”

criteria works the same with a non-trivial F2: there must be in the algebra of the manifold

an ek such that d(ek) = ei− ∧ ej−. The “z criteria” also works: Re(z) is parallel to the

O-plane, and its derivative is 0, so the O-planes have to share at least one direction which

gives a zero in the algebra. Im(z) has to be orthogonal to the O-planes so they have to share

at least one ei−. We recall that Re(z) and Im(z) are both non-zero and give at least two

directions otherwise the volume form would be zero. So for each O-plane remain two + and

two − directions. Can they share them? Considering exactly the same argument as before

with Re(Ω2)||, we get the following “direction criteria”: the non completely overlapping

O-planes share exactly one direction, the one given by Re(z), and no other. This leads once

again to the fact that at most two non completely overlapping O6 are possible at the same

time in an intermediate SU(2) solution. Applying all these criteria we get to the following

reduced list:

n3.9(235, 346), n3.10(136, 235), n3.11(136, 235), n3.15 (235, 346), n3.16(136, 235)

n4.2(236, 246, 345), n4.3(146, 345), n4.4(146, 236, 345), n4.6(246, 345),

n4.7(135, 146, 236, 245)

s2.2(135, 245), s2.5(136, 146, 236, 246), s2.6(146, 236), s3.2 (146, 145, 256, 356)

s3.3(136, 146, 236, 246), s3.4(145, 246, 346), s4.1 (145, 156, 256, 245, 146, 246). (D.3)

Considering the symmetries, we get the following list to be tried:

n3.9(235, 346), n3.10(136, 235), n3.11(136, 235), n3.15 (235, 346), n3.16(136, 235)

n4.2(236, 345), n4.3(146, 345), n4.4(146, 345), n4.6 (246, 345), n4.7(135, 146)(135, 236)

s2.2(135, 245), s2.5(136, 246), s2.6(146, 236), s3.2 (146, 256)

s3.3(136, 246), s3.4(145, 246), s4.1(145, 246). (D.4)

Of course we recover our solutions in these lists (they pass all the criteria).
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